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Elektronlar ve Alanlar 
GİRİŞ 

Bu deney serisinde yüklü parçacıkların (elektronlar) elektrik ve manyetik alanlardaki 
hareketini inceleyeceğiz. Bu deneylerde elektronlar, davranışları Newton hareket yasaları ile 
belirlenen klasik parçacıklar gibidir. Yani hızlar her zaman ışık hızına (3x108 m/s) göre 
küçüktür, hiçbir görelik düzeltmesi gerekmez ve deneysel boyutlar atom boyutları yanında o 
kadar büyüktür ki, kuantum etkileri dikkate alınmaz. 

ÖZET 

Deneylerin içerdiği konular şöyle özetlenebilir: 

• EA1-Elektronların bir elektrik alanında hızlanması ve bir elektron demetinin düzgün 
enine bir elektrik alanında saptırılması. 

• EA2-Düzgün olmayan bir elektrik alanında bir elektron demetinin odaklanması ve 
demetin şiddetinin kontrolü. 

• EA3-Bir elektron demetinin enine bir manyetik alanda saptırılması. 

• EA4- Bir diyot lambada oluşturulan elektronların eksensel bir manyetik alan ile çapsal 
bir elektrik alanı etkisi altında hareketi. 

İlk üç deneydeki temel araç, işleyiş ilkeleri bir televizyon resim tüpüne oldukça benzeyen bir 
elektron demeti tüpüdür. Bu tüpe genellikle katot ışını tüpü (kısaltılmışı KIT; İngilizce 
kısaltılmışı CRT) denir. Bu ad ondokuzuncu yüzyılın ortalarında alçak basınçlı gazlarda 
elektrik iletiminin incelenmesi sırasında ortaya çıkmıştır. Bu tip deneylerde, elektron dövmesi 
ile atomik enerji düzeylerinin uyarılması, katoda yakın bölgelerde, “katot ışınları” diye 
adlandırılan mavimsi ışınların çıkmasına yol açtığından bu isim kullanılmaktadır. 

Katot ışını tüpü aslında, kesiti Şekil-1’de görüldüğü gibi uzun boyunlu düz tabanlı büyük bir 
cam balondur. Televizyon ve osiloskopta siz bunun yalnız tabanını görüyorsunuz. 

Elektron hareketinin incelenmesini sağlayan uygun bir deney düzeneği olmaktan da öteye, 
katot ışını tüpü, deneysel bilimlerin (kimya, biyoloji, tıp) birçok alanlarda çok yararlı bir aygıt 
olan katot ışınları osiloskobunun en önemli parçasıdır. Şu halde katot ışını tüpünde elektron 
hareketinin incelenmesi, ilerde bu ve başka çalışmalarda pek çok kullanılacak olan 
osiloskobun anlaşılmasına yardım edecektir. 

Bir katot ışını tüpü içinde: (1) Katottan kopartılan elektronları belli bir hıza ulaştırıp onları bir 
demet halinde toplayan bir elektron tabancası; (2) iki çift paralel levhadan oluşan bir saptırıcı 
düzenek; (3) tüpün sonunda elektron demetinin çarptığı noktayı görülür hale getiren bir 
floresan ekran bulunur. Bunların hepsi bir cam balon içine yerleştirilmiştir ve elektronların 
hava molekülleri ile çarpışması ile saçılmalarını önlemek için balonun havası boşaltılmıştır. 
Bu parçaların düzenlenişi Şekil-1’de gösterilmiştir. 
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Şekil-1. Tipik bir katot ışını tüpü kesiti (KIT). F: Isıtıcı, K: Katot, G1: Şiddet ayarlayıcı ızgara, 
L: demet odaklayıcı ve hızlandırıcı, Y: Düşey saptırıcı levhalar, X: Yatay saptırıcı levhalar,  
S: Fosfor kaplı ekran, C: Cam Tüp. 

 

Bir elektronun tüp boyunca hareketi sırasında bir tek gaz molekülü ile bile çarpışma 
olasılığının çok düşük olması için tüpteki gaz basıncı yaklaşık 10–6 atm’den aşağı olmalıdır. 
Bu yüksek boşluğu normal mekanik pompalar sağlayamayacağı için difüzyon pompaları 
kullanılır. 

Elektron tabancası Şekil-2’de daha ayrıntılı olarak gösterilmiştir. Elektron kaynağı şekilde 𝐾 
ile gösterilen katoddur. İçteki bükülmüş ısıtma telinden geçirilen akım ile yaklaşık olarak 
1200 K’ya kadar ısıtılan ve seramik bir kılıf ile elektrikçe yalıtılmış bulunan ince bir silindir 
katodun kendisini oluşturur. 

 

 

Şekil-2. Tipik bir katot ışını tüpünün elektron tabancası kısmının kesit şeması. 

 

K 

G1              G2   A1       A2 

  V1 

V2 

VC VB 
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Silindirin uç kısmı baryum ve stronsiyum oksit ile kaplıdır. Bu maddeler ısıtılınca bazı 
elektronları yüzeyden kopacak kadar enerji edinirler ve böylece katodu saran boşlukta 
serbestçe hareket ederler.  Bu olaya termiyonik yayınım denir. 

Şekil-2’deki kesitte görüldüğü gibi katot ile aynı eksenli silindir biçimli tabanları dairesel 
elektrik supapları olarak işleyen dört elektrot vardır. Denetim kafesi denilen 𝐺1 elektrodu 
katoda göre eksi, yaklaşık 5 ile 20 V arasında bir potansiyelde çalıştırılır. Böylece meydana 
gelen elektrik alan elektronları tekrar katoda doğru zorlar. Bu nedenle bu potansiyeli 
değiştirerek 𝐺1’in aralığından geçen elektronların sayısı dolayısı ile demetin şiddeti 
denetlenebilir. 𝐺2 elektrodu 𝐴2’ye içten bağlıdır ve her ikisi de 𝐾’ya göre artı birkaç yüz  
(100-600) voltluk 𝑉2 potansiyelinde çalışır. Bu gerilimle oluşan alan, elektronları elektrot 
ekseni boyunca hızlandırır. 𝐴1 elektrodu 𝐾 ve 𝐺2’nin potansiyelleri arasında bir 𝑉1 (𝐾’ya 
göre) potansiyelinde tutulur. 𝐺2 ile 𝐴1 ve 𝐴1 ile 𝐴2 arasında oluşan alanlar 𝐺1’den çeşitli 
doğrultularda çıkan elektronları küçük paralel bir demet halinde bir araya getirmeye yarar. Bu 
demetin çapı aslında 𝐺1’deki deliğin çapına bağlıdır. Odaklamanın tam olması 𝑉1/𝑉2 
oranında belli bir kritik değer veren gerilimlerin seçilmesi ile olur. 

Elektron demeti Şekil-1’de gösterildiği gibi iki çift saptırıcı levha arasından geçer. Çiftlerden 
herhangi birinin iki levhası arasına bir potansiyel farkı uygulanması ile demeti saptıran bir 
elektrik alanı oluşur (Deneylerimizde katot ışını tüpünün yerleşimi elektronları yatay ve düşey 
doğrultuda saptıracak şekilde ayarlanmıştır). Bu sapma olayı Deney EA-1’de ayrıntılı olarak 
incelenmiştir. Son olarak, elektron demeti tüpün floresan madde ile kaplı ekran kısmına 
çarpar. Floresan madde elektron demetinin çarpması ile görünür şekilde ışıldar. Bu olay, 
elektronların fosfor atomları ile çarpışıp onlardan bir kısmını normal durumlarından daha 
yüksek enerji düzeylerine çıkarması sonucu olur. Atomlar normal enerji düzeyine veya “taban 
haline” dönünce enerjileri görünür ışık halinde salarlar. 

Cam tüpün iç yüzeyi birçok görevi olan Aquadag adlı iletken bir grafit tabakası ile kaplıdır. 
Bu ikinci anot 𝐴2’ye elektrikçe bağlı olduğundan onun bir devamı şeklindedir ve elektron 
demetini çevredeki yabancı bir elektrik alanının etkisinden korur. Bu tabaka floresan 
maddenin elektron dövmesi ile saldığı ikincil elektronları toplar ve aynı zamanda dışarıdan 
gelen ışığın fosforlu iç yüzeye vurarak onun parlamasını ve dolayısıyla perdedeki görüntüde 
ton keskinliğinin azalmasını önler. 

UYARI 

İçindeki yüksek boşluk ve perdenin geniş düz bir yüzey halinde oluşu yüzünden tüpün 
kullanılması dikkat ister. Cam kılıfta bir vuruşla veya çizikten ileri gelen herhangi bir 
zayıflama, perde maddesinin ve camın her yere saçılması ile sonuçlanan şiddetli bir 
patlamaya yol açabilir. Laboratuvarda kullanılan tüpün koruyucu bir kılıfı vardır ve tüpe 
ancak bu kılıf takılı iken dokunulmalıdır.  

Katot ışını tüpü deneylerinde kullanılan aygıtlar 
Katot ışını tüpü 
Katot ışını tüpü (DG7-119), yatay (X) ve düşey (Y) saptırıcı plakaların bağıl konumlarını 
gösteren bir temel üzerine oturtulmuş yaklaşık 75 mm çapında floresan ekran ortamı 
kullanılır. Yatay saptırıcı (X) plakaların duyarlılığı yaklaşık olarak 21 V/cm ve düşey saptırıcı 
plakaların (Y) ise 35 V/cm’dir. Deney tüpü farglastan yapılmış bir tabla üzerine oturmaktadır. 
Deney tüpünün ekranının oturduğu pencere milimetrik ölçekli şeffaf ile kaplanmıştır. 
Kullanılan elektron tüpünün bir resmi Şekil-3’de verilmiştir. 
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5 uçlu konnektör (bağlantı fişi) güç kaynağı üzerindeki uygun sokete bağlanır. Tüpten çıkan 
mavi kablo 𝑉1 geriliminin ve kırmızı kablo ise (𝑉2) geriliminin değiştirilebilmesi için 
konnektörden ayrılarak küçük kutuya bağlanmıştır. 𝑉1 gerilimi güç kaynağı üzerindeki 𝑃1 
potansiyometresi (focus düğmesi) ile 𝑉2 gerilimi ise küçük kutu üzerindeki 
𝑃2 potansiyometresi ile ayarlanır. 

 

Şekil-3. Katot ışını tüpünün resmi. 

 

Katot ışını tüpü Güç Kaynağı  

Güç kaynağı 240 V, 50 Hz’lik bir ana besleme ile çalışmak üzere ayarlanmıştır. Bu güç 
kaynağı ile değişebilir odaklama (focus) (𝑉1), aydınlatma (𝑉3) ve hızlandırma (𝑉2) gerilimleri 
elde edilmektedir. 6,3 V’luk (0,3 A, 50 Hz) ısıtıcı kaynağı, aydınlatma gerilimi (V3) 
merkezdeki 5 girişli soket aracılığı ile tüpe bağlıdır. 

Güç kaynağı üzerinde birbirinin aynı dört adet 4 girişli soket bulunmaktadır. Bu uçlardan      
+6 V ve –6 V zaman tarama ve yükseltici giriş transistörlerini ve +90 V ise yükselticinin çıkış 
katını beslemek için kullanılır. Bu soketlerin aynı olmasından dolayı deney düzeneğindeki 
herhangi bir modül bu soketlerden herhangi birine bağlanabilir. Güç kaynağının sol üst 
köşesindeki sarı soketlerden 50 Hz’lik 6 V, 25 V ve 40 V’luk etkin değerlerde gerilimler elde 
edilebilir. Kullanılan güç kaynağının bir resmi Şekil-4’de verilmiştir. 

NOT: Tüpün ömrünün uzun olması için aydınlatma ayarı mümkün olduğunca düşük tutulmalı 
ve yine aynı nedenden dolayı aydınlık nokta gözlendikten sonra odaklama ayarı hafifçe 
azaltılmalıdır. 
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Şekil-4. Güç kaynağının resmi. 

Yükselteç: 

Yükselteçler üzerinde sağ taraftaki soketler doğrudan tüpün üzerindeki X veya Y plakalarına 
bağlıdır. (Yani Y1’e Y1 ucu, X1’e X1 ucu gibi...) ve bağlantı yapıldığında hiçbir şey 
değişmeden plakaların yansıma duyarlılığı korunur. 

Üst merkezde bulunan soket giriş transistörüne bir DC bağlantı sağlar ve sol soket ile birlikte, 
DC ve düşük frekans uygulamalarında ve de yükselteç zaman tarayıcı ile birlikte 
kullanıldığında giriş olarak kullanılır. 

Ayarlamak için kazanç (gain) düğmesi tamamen saat ibresinin tersi yönünde döndürülmeli ve 
kaydırma (shift) düğmesi çizgi tüpün merkezine gelecek şekilde ayarlanmalı ve daha sonra 
kazanç düğmesi istenilen genliğe ayarlanmalıdır. Maksimum kazanca etkin değeri 50 mV 
olan bir giriş voltajı ile tüpü taramak mümkündür. Gerekli çalışma gerilimlerini sağlamak için 
4 uçlu fiş güç kaynağı üzerindeki 4 girişli soketlerden birine bağlanır. Kullanılan yükseltecin 
bir resmi Şekil-5’de verilmiştir. 
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Şekil-5. Kullanılan yükseltecin resmi. 

 

Elektromanyetik Saptırma Birimi 

EA-3 deneyinde 3000 sarımlı iki bobin kullanılacaktır. Her bobinin direnci yaklaşık           
125 Ω’dur. Deney yaparken bunu ölçünüz. Seri bağlı bobinleri X plakaları ile aynı yönde 
olacak şekilde tüpün etrafına yerleştirerek olası Thomson e/m deneyi için bir düzenek 
sağlanabilir. Bobinler isteğe göre seri ve paralel bağlı olarak tüpün üzerine doğrudan 
yerleştirilerek kullanılabilir. 

Tüpün üzerine yerleştirilen bobinlere etkin değeri 6 V olan bir gerilim uygulandığında 
yaklaşık olarak 3 cm’lik bir sapma gerçekleşir. Bu sapma normal Y yönünde tamamen 
gözlenebilir fakat normal X yönünde belli bir genliğin üzerinde tüp içerisindeki X plakaları 
tarafından gölgelenir. Bu deneylerde bobinler 0-40 V aralığında ayarlanabilir bir DC güç 
kaynağı ile beslenecektir. Kullanılan elektromanyetik saptırma biriminin bir resmi Şekil-6’da 
verilmiştir. 

 

Şekil-6 Kullanılan elektromanyetik saptırma biriminin resmi. 
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Deney EA - 1  
Elektronların Hızlanması ve Sapması  
 

GİRİŞ  
 
Bu deneyde, elektronların elektrik alanında hızlanmasını ve yörüngelerinin bükülmesini 
gözleyeceksiniz. Elektron hareketini anlatmak için dik koordinat sistemini kullanacağız ve 
𝑧 eksenini tüp ekseni doğrultusunda, 𝑥 eksenini tüp taban yüzeyine göre yatay doğrultuda ve 
𝑦 ekseni de bu düzlemde düşey doğrultuda alacağız.  
 
Katottan salınan bir elektron, elektron tabancasının deliklerinden geçtikten sonra 𝐴2 
anodundan z doğrultusunda bir 𝑣𝑧  

hızı ile çıkar. 𝑣𝑧’nin büyüklüğü 𝐾 ile 𝐴2  
arasındaki  𝑉2 

potansiyel farkına bağlıdır. Elektron 𝐾’dan 𝐴2’e kadar gitmekle 𝑒𝑉2 potansiyel enerjisini 
yitirir. Öyleyse katottan önemsenmeyecek bir kinetik enerji ile ayrılan bir elektronun 𝐴2’den 
çıktıktan sonraki kinetik enerjisi  
 
     1

2
𝑚𝑣𝑧2 = 𝑒𝑉2             (1) 

 
bağıntısı ile verilir. Elektron artık, saptırıcı levhalar arasında hiçbir potansiyel farkı yoksa 
plakalar arasından sapmadan geçer ve (elektron tabancası tam olarak ayarlanmış ise) ekranın 
merkezine çarparak küçük parlak bir noktamsı iz oluşturur. Fakat düşey saptırıcı levhalara 
(düzlemleri yatay olan çift) bir 𝑉𝑑  

potansiyel farkının uygulandığını düşünelim: Levhalar 
arasında enine bir 𝐸𝑦  

alanı ve dolayısıyla enine bir 𝐹𝑦  
kuvveti oluşacak ve bu kuvvet hızın 𝑣𝑧  

bileşenini değiştirmeksizin elektrona enine bir 𝑣𝑦  
hızı verecektir. Böylece elektron saptırıcı 

levhalar arasından Şekil-7’de görüldüğü gibi, eksenle  
 

 𝑡𝑎𝑛𝜃 =  𝑣𝑦
𝑣𝑧

          (2) 
 

bağıntısı ile verilen bir 𝜃 açısı yaparak çıkacaktır. Saptırıcı potansiyel ve levha boyutları 
bilinirse bütün bu nicelikler şimdi göstereceğimiz şekilde hesaplanabilir.  

 
Önce Şekil-7’deki gibi bir d uzaklığı ile ayrılmış iki levha arasındaki 𝑉𝑑  

potansiyel farkı 
𝐸𝑦 = 𝑉𝑑/𝑑 enine elektrik alanı ve büyüklüğü 𝐹𝑦 = 𝑒𝐸𝑦 = 𝑒𝑉𝑑/𝑑 olan bir enine kuvvet 
oluşturur. Bu kuvvet elektrona, levhalar arasından geçtiği ∆𝑡 süresince, enine kuvvetin 
itmesine eşit enine bir 𝑚𝑣𝑦 momentumu verir:  
 

𝑚𝑣𝑦 =  𝐹𝑦∆𝑡 =  𝑒𝑉𝑑
∆𝑡
𝑑

                    (3) 

yani  

            𝑣𝑦  = 𝑒
𝑚
𝑉𝑑
𝑑
∆𝑡                          (4) 

dir. 
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Şekil-7. Elektronların düşey saptırıclar tarafından saptırılması. 
 
 

Fakat ∆𝑡 süresi elektronun aynı zamanda eksen boyunca olan 𝑣𝑧 hızı ile 𝑧 ekseni 
doğrultusunda, levhaların boyuna eşit bir 𝑙  uzaklığını alma süresidir. Öyleyse 𝑙 =  𝑣𝑧 ∆𝑡 olur. 
Bu bağıntıdan ∆𝑡  çözülüp Eşitlik (4)’de yerine konulursa  

𝑣𝑦   =  𝑒
𝑚
𝑉𝑑
𝑑

 𝑙
𝑣𝑧

                 (5) 

sonucu elde edilir. 𝜃 sapma açısı  

 

𝑡𝑎𝑛𝜃 = 𝑣𝑦
𝑣𝑧

 =  𝑒𝑉𝑑𝑙
𝑑 𝑚𝑣𝑧2

           (6) 

  
ile verilir. Eşitlik (1)’deki enerji bağıntısından yararlanarak  

 

𝑡𝑎𝑛𝜃 =  𝑉𝑑
𝑉2

 𝑙
2𝑑

           (7) 

 

elde ederiz. Beklediğimiz gibi bu eşitlikten, yörünge bükülmesinin 𝑉𝑑   
saptırıcı gerilimi ve 

levhaların boyu ile arttığı görülür. Levhaların uzun olması ile enine alan elektronları daha 
uzun bir süre etkileyerek sapmaların daha büyük olmasını sağlar. Sapma 𝑑 ile ters oranlıdır. 
Verilen bir toplam gerilim farkı için levhalar birbirlerine ne kadar yakın olursa saptırıcı alan 
da o kadar büyük olur. Son olarak, 𝑉2 

hızlandırıcı geriliminin küçülmesi, elektronların eksenel 
hızlarının (𝑣𝑧) azalmasını, dolayısı ile saptırıcı alanın daha uzun bir süre etkimesini 
sağlayacağı için sapmayı artırır. Bundan dolayı aynı enine hız için küçük eksenel hızlarında 
daha büyük açısal sapmalar elde ederiz.  

 
Elektron demeti saptırıcı bölgeden ayrıldıktan sonra, tam ayrıldığı noktadaki yola teğet bir 
doğru boyunca hareket eder. Böylece perde üzerindeki parlak nokta düşey doğrultuda 
𝐷 =  𝐿 𝑡𝑎𝑛𝜃 bağıntısı ile verilen bir 𝐷 uzaklığı kadar kaymıştır. Burada 𝐿 perde ile levhalar 
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arasındaki uzaklıktır (Perdenin hafif bükümünü göz önüne almıyoruz). Levhalar arasındaki 
hareketin daha ayrıntılı olarak incelenmesi 𝐿’nin levhaların orta yerinden perdeye kadar 
ölçülmesi gerektiğini gösterir (𝐿′ =  𝐿 + 𝑙/2). Böylece  

 
 𝐷 =  𝐿′ 𝑉𝑑

𝑉2

𝑙
2𝑑

           (8) 
 
olur. 
 
 
1. ELEKTRİKSEL BAĞLANTILAR 

Güç kaynağı ile KIT (CRT) arasındaki elektrik bağlantıları Şekil-8’de gösterilmiştir. Katot 
ışını tüpünden çıkan, fitil ve katodu besleyen beş uçlu soket güç kaynağının CRT girişine 
takılır. Tüpten çıkan kırmızı ve mavi renkteki kablolar gerilim bölücünün CRT girişlerine       
(Mavi olan 𝑉1’e, Kırmızı olan 𝑉2’ye) bağlanır. Ayrıca, gerilim bölücü üzerinde 𝑉1 ve 𝑉2 
gerilimlerinin ölçülmesine olanak sağlayan girişler de mevcuttur (Şekil-9). 
 
Katottan çıkan elektronların sayısı, güç kaynağı üzerindeki 𝑃3 potansiyometresi ile 
denetlenebilir ve değeri gerilim bölücü üzerindeki 𝑉3 girişi kullanılarak ölçülebilir. Güç 
kaynağı üzerindeki 𝑃1 potansiyometresi 𝑉1 gerilimini (odaklama gerilimi), gerilim bölücü 
üzerindeki 𝑃2 potansiyometresi ise 𝑉2 gerilimini (hızlandırma gerilimi) denetler. 

 

UYARI  

Elektriksel bağlantıları yaptıktan sonra, deney sorumlunuz kontrol etmeden güç kaynağını 
kesinlikle çalıştırmayınız. Hızlandırma ve odaklanma gerilimlerini okumak için 
kullanacağınız voltmetreleri uygun skalaya getirdikten sonra çalıştırınız. Hızlandırıcı ve 
odaklama gerilimleri yüksek olduklarından, devrede kullandığınız kabloların açık uçlarına 
kesinlikle dokunmayınız. Kuvvetli ve belki de hayatınıza mal olabilecek bir elektrik 
çarpmasına uğrayabilirsiniz. Perdede aşırı parlak bir nokta elde etmeye çalışmayınız. Çünkü 
aşırı parlak bir nokta ekranın elektron dövmesi ile fazlaca ısınmasına dolayısı ile o bölgedeki 
fosforun bozulmasına yol açar. 
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Şekil-8. Deney düzeneği ve bağlantıları. 

 
 

 
 

Şekil-9 Gerilim bölücü. 
 

 

2. SAPMA ÖLÇÜMÜ  

Hızlandırıcı ve odaklayıcı gerilimleri sabit tutarak 𝐷 sapmasını 𝑉𝑑  
saptırıcı geriliminin 

fonksiyonu olarak ölçünüz. Saptırıcı levhaların merkezinin perdeye olan 𝐿′ =  𝐿 + 𝑙/2  
uzaklığını ölçünüz veya katot ışını tüpünün kataloğundan alınız (DG7-119). 𝑉𝑑’nin her değeri 
için 𝑡𝑎𝑛𝜃’yı hesaplayınız ve 𝑡𝑎𝑛𝜃’yi 𝑉𝑑’nin fonksiyonu olarak bir grafikle gösteriniz. Eğrinin 
şekli nasıl olmalıdır? 𝑉1 

ve 𝑉2’nin değerlerini yazmayı unutmayınız.  

DG7-119 

2 
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3. DEMET GERİLİMLERİNİN DEĞİŞTİRİLMESİ  

𝑉2’
 
nin değerini değiştiriniz, iyi bir odaklama için 𝑉1’i ayarlayınız ve tekrar 𝑡𝑎𝑛𝜃’yı 𝑉𝑑’nin 

fonksiyonu olarak çiziniz. Birincisi ile bu grafik arasında ne gibi bir fark vardır? Deneyi  𝑉1’in 
en az iki değeri için daha tekrarlayınız.  

4. GRAFİKLE ÇÖZÜMLEME  

Her 𝑡𝑎𝑛𝜃 değerini karşılığı olan 𝑉2 
değeri ile çarpınız ve 𝑉2. 𝑡𝑎𝑛𝜃’yı 𝑉𝑑’nin bir fonksiyonu 

olarak çiziniz. Eşitlik (7)’yi kullanarak sonucun ne olması gerektiğini bulabilir misiniz?  
 
5. l/d’NİN BULUNMASI  
 
Yukarıdaki grafiklerden 𝑙/𝑑 oranının değerini bulabilir misiniz? Bulduğunuz değeri 
levhaların doğrudan doğruya ölçülmesi ile elde edilen değerlerle karşılaştırınız.  
 
 
SORULAR 
 
1. Düşey sapmanın gerilim duyarlılığı, yani birim sapma için gerekli saptırıcı gerilim nedir? 

Bu, hızlandırıcı gerilim ile nasıl değişir? 
 

2. Düşey ve yatay gerilim duyarlıklarının aynı veya farklı olmasını bekler misiniz? Niçin? 
Zamanınız olunca bunu sınayabilirsiniz. 

 
3. Hızlandırıcı gerilim 𝑉2 = 500 V olursa demetteki elektronların hızları ne olur? Bir 

elektronun katottan perdeye kadar gitmesi için ne kadar zaman gerekir? 
 
4. Saptırıcı levhalara bir alternatif gerilim (AC) uygulanırsa ne olur? 
 
5. Yerçekimi kuvvetinin elektronların hareketi üzerinde önemli bir etkisi var mıdır? 
 
6. Elektron hareketinin incelenmesinde demetteki elektronlar arasındaki etkileşmeyi ele 

almadık. Bu ihmalin haklılığını nasıl gösterirsiniz? 
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Deney EA - 2  
Odaklama ve Şiddet Ayarı  

 

GİRİŞ 
 
Bu serinin ilk deneyi bir elektron demetinin düzgün bir elektrik alanında sapması ile ilgili idi. 
Bu deneyde katot ışını tüpünün elektron tabancasını oluşturan çeşitli elektrotlarla elektron 
demetinin nasıl denetim altına alındığını ve nasıl odaklandığını inceleyeceğiz. Odaklayıcı 
elektrotların işleyişi bir ışık demetini odaklayan yakınsak merceklerinkinin tam benzeridir ve 
bu benzerlik, ayrıntıları ile aşağıda tartışılacaktır. 

 
Şekil-10.  Elektron demetinin oluşumu. 

 
 
Bir elektron demeti ilkeler bakımından Şekil-10’da gösterilen düzenek ile oluşturulabilir; 
delikleri yeterince küçülterek demeti istediğimiz kadar inceltebiliriz.  
Uygulamadaki güçlük, elektronların ısıtılan katottan her doğrultuda püskürülmesinden gelir; 
bunların, yalnız çok küçük bir kısmı anot deliklerinden doğrudan geçecek yönde çıkar. 
Elektronlardan çoğu ekrana değil anotlara vurur; sonuçta ekrandaki nokta görülemeyecek 
kadar sönük olabilir.  
Uygun biçimde elektrik alanı kullanarak ilk hızları eksen doğrultusunda olmayan 
elektronların doğrultusu değiştirilebilir. Böylece çok daha şiddetli bir demet ve dolayısı ile 
daha parlak bir nokta elde edilebilir. Durum Şekil-11’de gösterilen bir slayt (saydam film) 
projeksiyon makinesindeki toplayıcı mercek ile aynanın oluşturduğu sisteme benzemektedir. 
Bu sistem, projeksiyon lambasından çeşitli doğrultularda çıkan ışığın “toplanıp” yakınsanarak 
filmden ve projeksiyon merceğinden geçip perdeye ulaşmasını sağlar. Toplayıcı mercekleri 
çıkarılırsa perdede görüntü yine görülür fakat şiddeti çok zayıflamıştır.  
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Şekil-11. Bir slayt projeksiyonundaki odaklayıcı mercek-ayna düzeneği.  
 
 
Şekil-12 çeşitli elektron demetinin kesitini göstermektedir. Hızlandırıcı ve odaklayıcı alanlar 
başlıca elektrotlar arasındaki bölgelerde bulunur; eş potansiyel yüzeyler ile aşağı yukarı 
tümüyle çevrili bulunduğu için 𝐴1 

ve 𝐴2’
 
nin iç bölgelerinde hemen hiç alan yoktur. 

 
 

  
 

Şekil-12. Tipik bir katot ışını tüpünün elektron tabancası kısmının kesit görünümü. 
 
 
𝐴1’in iki ucundaki alanların odaklama işlemini nitel olarak anlamak için 𝐴1 

ve 𝐴2 
arasındaki 

bölgeyi göz önüne alalım. Bu bölgenin kesitinin büyütülmüş hali Şekil-13’de gösterilmiştir. 
Şekil aynı zamanda birkaç eşpotansiyel yüzeyin ve elektrik alan kuvvet çizgisinin kesitini de 
göstermektedir. Eksenden uzaklaştırıcı enine 𝑣𝑟 hız bileşeni ile 𝐴1’den çıkan bir elektron, 
enine alan bileşeninin eksene doğru çeken etkisiyle karşılaşır. Elektron 𝐴2’ye ve 𝑬’nin 𝐸𝑟 
enine bileşeninin onu eksenden uzaklaştırdığı bölgeye yaklaşırken 𝐸𝑧 eksensel bileşeni ile de 
hızlanır. Bu bölgede daha hızlı hareket ettiği için dışarı doğru olan itme daha önceki içeri 
doğru itmeden daha küçük kalır ve dolayısı ile elektronun net sapması eksene doğru olur.  

Potansiyel kutupları ters çevrilse de odaklama olur. Bu durumda demet ilk önce dışarı doğru 
itilir. Sonra yavaşlatılır ve daha sonra 𝐴1’ye yaklaşırken içeri doğru çekilir. Elektronlar ikinci 
bölgede birincidekinden daha fazla kaldıklarından sonunda içeriye doğru çekilmiş olurlar.  
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Şekil-13. Odaklama bölgesindeki elektrik alan çizgileri ve eş-potansiyel eğrilerinin ayrıntılı 
görünümü. 

 
Odaklama işleminin temel geometrisi, tüm elektron yörüngesini basitleştirilmiş bir şekilde 
veren Şekil-14’de gösterilmiştir. Burada odaklayıcı elektrotlar arasındaki yolun toplam yol 
uzunluğuna göre küçük olduğu varsayılmıştır. 
 
Elektronların 𝐺2 

birinci hızlandırıcı elektrotundan aşağı yukarı aynı 𝑣𝑧 eksensel hız bileşeni, 
fakat farklı 𝑣𝑟  radyal bileşenleri ile çıktığını düşünelim. O zaman elektronlar, eksenden olan 
uzaklıkları 𝑣𝑟 değerleri ile orantılı olacak şekilde, eksenden çeşitli r uzaklıklarında odaklama 
bölgesine ulaşırlar. Odaklama bölgesinin görevi farklı 𝒗’lerle gelen elektronları ekrana doğru 
yeniden toplamak için 𝑣𝑟’leri yeterince değiştirmektir. Böylece 𝑣𝑟’lerin son değerleri de r ile 
oranlı olmalıdır. Şu halde odaklamada temel koşul, her elektron için ∆𝑣𝑟 radyal hız 
değişiminin r ile oranlı olmasıdır. Bu durum ıraksak ışık ışınlarının yakınsak bir mercek ile 
odaklanmasına benzer. Uygulamada odaklama bölgesinin uzunluğu toplam yol uzunluğuna 
göre ihmal edilemediğinden durumun optik benzeri kalın mercek halidir (Kalın kenarlı 
mercek değil). İlerde göreceğimiz gibi, elektrostatik odaklamada da optik bağıntıya çok 
benzeyen bir mercek Eşitliği ve hatta bir de “kırılma indisi” vardır. 
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Şekil-14. Odaklama işleminin temel geometrisi. 
 
 

Elektron hareketini daha ayrıntılı olarak incelemek için 𝐴1 
ve 𝐴2 

arasındaki bölgenin 𝑬 
elektrik alanını Şekil-13’de gösterildiği gibi eksensel ve 𝐸𝑟 radyal bileşenler cinsinden 
gösterelim. Uç bölgeler dışında 𝐸𝑧’nin hemen hemen aynı biçimde ve 𝐸𝑟’nin yalnız uç 
bölgelerde sıfırdan fazlaca farklı olduğunu varsayalım. Bu iki bileşenin birbirinden bağımsız 
olmadığını bulacağız; eğer 𝐸𝑧 düzgün ise 𝐸𝑟 eksenden olan r uzaklığı ile oranlı olmalıdır. Bu 
bağıntının odaklama işleminde çok önemi vardır. Elektronun 𝒗 hızını 𝑣𝑧 eksensel ve 𝑣𝑟 radyal 
bileşenleri ile gösterelim. Şimdi 𝑉1, 𝐴1’in ve 𝑉2 

de 𝐴2’nin katoda göre potansiyelleri olsun. 
Elektronların katottan hiç bir ilk hız olmadan ayrıldıklarını düşünürsek 𝐴1 

ve 𝐴2 
içindeki 

hızları sıra ile  

   ½ 𝑚𝑣12  =  𝑒𝑉1 ve   ½ 𝑚𝑣22 =  𝑒𝑉2                          (9) 
 
enerji bağıntıları ile verilir. Böylece elektronlar 𝐴1 ve 𝐴2 arasındaki bölgeye 𝑣1 eksensel hızı 
ile girer. Başlangıçta elektronun eksenden bir r uzaklığında bulunduğunu düşünelim. 𝑙 yolunu 
alması için geçen zaman 𝛥𝑡 =  𝑙/ 𝑣1 dir. Bu sure boyunca – 𝑒𝐸𝑟 ışınsal alan kuvveti 
elektrona 
 

−𝑒𝐸𝑟 𝛥𝑡 =  −  𝑒𝐸𝑟𝑙
𝑣1

             (10) 
 
itmesini verir. Bu itme enine momentumdaki 𝑚𝛥𝑣𝑟 değişimine eşittir ve böylece elektron 
hızının radyal bileşenindeki değişme 
 

𝛥𝑣𝑟  =  −  𝑒
𝑚
𝐸𝑟𝑙
𝑣1

                  (11) 
 
ile verilir. Bu durumda elektron orta bölgeyi  
 

𝐸𝑧  =  (𝑉2−𝑉1)
2𝑅

                              (12) 
 
ile verilen 𝐸𝑧 düzgün eksensel alanın etkisi altında geçer. Bu alan elektronun hızının ışınsal 
bileşenini değiştirmeden eksensel hızını 𝑣1’den 𝑣2’e çıkarır.  Son olarak, ikinci uç bölgedeki 
hızın ışınsal bileşeni Eşitlik (11)’de 𝑣1 yerine 𝑣2 koymakla elde edilen  
 

𝛥𝑣𝑟 =  + 𝑒
𝑚
𝐸𝑟𝑙
𝑣2

                  (13) 
 
niceliği kadar değişir. Şu halde 𝑣𝑟’deki net değişme  
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𝛥𝑣𝑟 =  −  𝑒
𝑚
𝐸𝑟𝑙 �

1
𝑣1
− 1

𝑣2
�                  (14) 

 
O halde yukarıda işaret edildiği gibi 𝐸𝑟 bileşeni, 𝐸𝑧 eksensel bileşenine bağlıdır. Bu bağıntıyı 
elde etmenin en kolay yolu ekseni elektrotlarla aynı r yarıçaplı bir silindire Gauss yasasını 
uygulamaktır. Şekil-15’de gösterildiği gibi silindirin merkezinden geçen akı çizgilerinin çoğu 
l boyundaki uç bölgelerden çıkar. Bu silindirin merkezinden r yarıçaplı bir kesitten geçen akı 
𝜋𝑟2𝐸𝑧 olup uç bölgelerden birinden geçen radial akı 2𝜋𝑟𝑙𝐸𝑟’dir. Bunların birbirine eşit 
olması gerektiğinden  
 
                 𝐸𝑟 =  𝑟

2𝑙
𝐸𝑧 =  𝑟

2𝑙
𝑉2− 𝑉1
2𝑅

       (15) 
 
elde edilir.  

  
 

Şekil-15. Elektrotlarla aynı eksenli ve yarıçaplı Gauss yüzeyi. 
 
 
 
Bu 𝐸𝑟’nin gerçekten r ile orantılı olduğunu gösterir. Bu sonucu Eşitlik (14)’de kullanarak  
 

 

𝛥𝑣𝑟 = − 𝑒
𝑚

 𝑟
4𝑅

(𝑉2 − 𝑉1) � 1
𝑣1

 −  1
𝑣2
�      (16) 

                               
elde ederiz. Bu bağıntı odaklamanın gereksediği gibi 𝛥𝑣𝑟’nin de r ile orantılı olduğunu 
gösterir. 𝑉2 – 𝑉1 niceliği 𝑣1 ve 𝑣2 hızlarına Eşitlik (9)’da verilen enerji bağıntıları ile bağlıdır. 
Bu bağıntılardan  
 

𝑉2 − 𝑉1 = 𝑚
2𝑒  ( 𝑣22 – 𝑣12)        (17) 

 
elde edilir. Bunu Eşitlik (16)’ya taşırsak  
 

𝛥𝑣𝑟 = −  𝑟8𝑅 ( 𝑣22 –  𝑣12) � 1
𝑣1

 −  1
𝑣2
�                             (18) 

bulunur. 
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Son olarak 𝛥𝑣𝑟’yi Şekil-14’de gösterilen 𝑧1 cisim ve 𝑧2 görüntü uzaklıklarına bağlayalım. 
𝑣𝑟’nin ilk değerinin 𝑣𝑟1 =  𝑟𝑣1/𝑧1 ve son değerinin 𝑣𝑟2 = – 𝑟𝑣2/𝑧2 olduğunu görmek 
mümkündür (Bu şekilde birinci bölgedeki benzer dik üçgenden 𝑟/𝑧1 =  𝑣𝑟1/𝑣1 ve ikinci 
bölgedeki benzer dik üçgenlerden 𝑟/𝑧2  =  𝑣𝑟2/𝑣2 yazılabildiği için). Öyle ise ışınsal hızdaki 
değişme  

𝛥𝑣𝑟 = 𝑣𝑟2 − 𝑣𝑟1 =  − 𝑟 �𝑣1
𝑧1

+ 𝑣2
𝑧2
�      (19) 

 
dir. Bunu Eşitlik (18) ile birleştirerek ve  
 

𝑛 = 𝑣2
𝑣1

= �𝑉2
𝑉1
�
1/2

      (20) 
 
kısaltmasını kullanarak sonunda 
 

1
𝑧1

+ 𝑛
𝑧2

= (𝑛−1)2(𝑛+1)
8𝑛𝑅

      (21) 

 
elde ederiz. Bu eşitlik geometrik optikte Şekil-16’deki gibi kırıcı bir yüzeyin görüntü 
oluşturma eşitliğine çok benzemektedir (Eşitlik (22)). Bunun için Fundamentals of Physics - 
Halliday and Resnick kitabına bakabilirsiniz. Yalnız elektrostatik merceklerin odak uzaklığı 
n’ye daha karışık bir şekilde bağlıdır. 
 

 
Şekil-16. Kırıcı cam bir yüzeyin görüntü oluşturması. 

 
          

𝑛1
𝑝

+ 𝑛2
𝑞

= 𝑛2−𝑛1
𝑅

     (22) 

 
𝐺2 

ve 𝐴1 
arasındaki odaklama bölgesi için de tam benzer bir inceleme yapılabilir. Bu iki bölge 

birlikte kalın bir merceğin iki yüzeyi gibi davranır ve bileşik ortak odak uzaklığı ve ana 
düzlemlerin konumları, ayrı ayrı odak uzaklıklarından hesaplanabilir. Uygulamada, oranlar 
öyle seçilir ki elektronlar odaklayıcı anot içinde hemen hemen eksene paralel hareket etsinler. 
Şu halde 𝐴1 –  𝐴2 

bölgesinin etkisi paralel bir demeti perde üzerine odaklamaktır.  
 

3BP1 ve benzer tüplerdeki elektron tabancası, 𝑉2
𝑉1

= 4 veya kırılma indisi yaklaşık olarak 
𝑛 =  2 olacak şekilde düzenlenmiştir. Bu değeri Eşitlik (21)’de 𝑧1 = ∞ ve 𝑧2 = 16 𝑐𝑚 
(𝐴1’den ekrana olan yaklaşık uzaklık) ile birlikte yerine koyarak R etkin değerini yaklaşıkça 
1,5 𝑐𝑚 buluruz.  
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Eşitlik (21)’e dönersek, 𝐴1 – 𝐴2  
bölgesinin odak uzaklığının, istenilen 16 𝑐𝑚 değerini alması 

için 𝑛’nin 
𝑛

16 cm
=

(𝑛 − 1)2(𝑛 + 1)
8𝑛(1,5 cm)  

veya  
 

 (𝑛 − 1)2(𝑛 + 1) − 3
4
𝑛2 = 0        (23) 

 
eşitliğini sağlaması gerekir. Bu bir kübik eşitlik olduğundan üç kökü vardır. Biraz önce işaret 
edildiği gibi köklerden birisi 𝑛 = 2’dir. Bu, öteki ikisini bulmakta kullanılabilir. Eşitlik (23)’ü 
(𝑛– 2)’ye bölünce ikinci dereceden bir eşitlik elde ederiz. Bu eşitliğin çözümü öteki iki kökü 
verir. Birisi eksidir ve bu nedenle hiç bir anlamı yoktur (Niçin?). Öbürü yaklaşık olarak 
𝑛 =  0,58’dir. Bu odaklama için gerekli öteki iki gerilim oranını verir 

 
 𝑉2/𝑉1 =  1/3        (24) 

 
 
Elektron demetinin şiddeti 𝐺1 

elektrodundaki delikten çıkan elektron akısına bağlıdır. 𝐺1, 
öteki elektrotlardaki potansiyellerin etkisinden katodu hemen hemen tümcek korur. Genellikle 
𝐺1 

in potansiyeli 𝐾’ya göre eksidir ve oluşan alan elektronları katoda doğru geri çevirmeye 
çalışır. Bazıları termik uyarmadan bu engeli aşacak kadar enerji alır. Fakat 𝐺1 

daha eksi 
oldukça 𝐺1’den daha az elektron çıkar. Bildiğimiz elektronlu lambalardaki adlandırmaya 
dayanarak 𝐺1’e genellikle denetim kafesi denir. Elektriksel perdeleme tam etkili 
olamadığından demeti büsbütün kesmek için gerekli eksi gerilim ve demet şiddeti bir 
dereceye kadar hızlandırıcı gerilime bağlıdır.  
 
 
DENEY 
 
1. ELEKTRİKSEL BAĞLANTILAR  
Deney EA-1’de kullanılan devrenin aynısı kullanılarak odaklama koşulu yoklanabilir (Bakınız 
Şekil-8). Ters odaklama odaklama koşulunu elde etmek için KIT’ten gelen mavi kabloyu 𝑉1 
gerilimine ve kırmızı kabloyu ise 𝑉2 gerilim ucuna bağlayınız. (Bu işlem sırasında güç 
kaynağını kapatmayı unutmayınız.) Bu durumda 𝑃1 potansiyometresi ile 𝑉1 odaklama (focus) 
gerilimini ve 𝑃2 potansiyometresi ile de 𝑉2 hızlandırma gerilimini ayarladığınızı unutmayınız. 
Eşitlik (24)’ü kullanırken buna dikkat etmemiz gerektiği açıktır. (Olası bir ters anlamayı 
önlemek için laboratuar görevlilerine danışabilirsiniz.) İkinci odaklama koşulunu bulunuz, 
gerilimleri ölçünüz ve yukarıdaki tartışma ile karşılaştırınız. Birinci ve ikinci odaklama 
koşullarını çeşitli 𝑉1 ve 𝑉2 değerleri için tekrarlayınız. 
 
2. DENETİM KAFESİ 
𝐺1 

elektrotunun etkisini incelemek için Şekil-8’deki devreye dönelim. Demet tamamen 
kesilinceye kadar 𝐺1 

eksi gerilimini (𝑉3) güç kaynağı üzerindeki parlaklık (brilliance) düğmesi 
ile artırınız ve kesilme için gerekli değerini ölçünüz.  
Bundan sonra hızlandırma ve odaklama gerilimlerini değiştirip deneyi tekrarlayınız. Kesilme 
gerilimi öteki gerilimlere bağlı mıdır?  
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UYARI  
𝐺1 

gerilimi sıfır iken tüpü çalıştırmayınız. Elektron demeti o kadar şiddetli olur ki ekranın 
fazla dövülmesi, floresan maddeyi kimyasal olarak değiştirip etkinliğini bozar, ekranda 
elektronların çarptığı bölgeyi “ölü bir nokta” bırakacak kadar ısıtır.  

 
 
SORULAR 
 
1. Elektron tabancasının elektrostatik mercek sistemi tüpün perdesinde bir görüntü oluşturur. 

Bu görüntüyü veren cisim nedir? 
 

2. Eşitlik (23)’ün eksi kökünün niçin fiziksel bir anlamı yoktur?  
 
3. Uygulamada tüpün çalışmasında odaklama için 𝑛 =  0,58 yerine niçin 𝑛 =  2 seçilir?  
 
4. 𝐺1’ den çıkan bütün elektronların tam olarak aynı hızda olmamaları odaklanmayı nasıl 

etkiler? 
 
5. Düşey saptırıcı levhalara sinüslü olarak değişen bir gerilim uygulansa ve 𝐺1 gerilimine de 

aynı frekanslı daha küçük bir gerilim eklenseydi ne olurdu? 
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Deney EA - 3  
Elektronların Manyetik Sapması  
 
GİRİŞ 
 
Bu serinin ilk iki deneyi elektronların, elektrotlardaki durgun yüklerin oluşturduğu elektrik 
alanlarında hareketi ile ilgili idi. Bu deneyde elektronların hareketine manyetik alanların (𝑩) 
etkisini göz önüne alacağız. Elektrik alanı duran iki yüklü parçacığın etkileşmesini nasıl 
anlatıyorsa, manyetik alan da birbirine göre hareketli yüklü parçacıkların etkileşmesini anlatır. 
Elektrik alanı birim yükü etkileyen kuvvet olarak, manyetik alan da birim akım öğesini 
etkileyen kuvvet olarak tanımlanır.  

Bir manyetik alan bir iletkenden geçen akımla oluşturulabilir. Uzun doğru bir iletkenin 
çevresinde oluşan manyetik alan iletkeni saran dairesel alan çizgileri ile gösterilebilir. 
Manyetik alan içinden 𝒗 hızı ile geçen yüklü bir parçacığa manyetik kuvvet etki eder. 

𝑭 =  𝑞𝒗 𝑥 𝑩         (25) 
Bu kuvvetin büyüklüğü  

𝐹 = 𝑞𝑣𝐵 𝑠𝑖𝑛 𝜃         (26)  

bağıntısı ile verilir. Doğrultusu ise 𝑩 ve 𝒗 vektörlerine diktir.  

Hatırlayacağımız üzere 𝑨 ve 𝑩 vektörlerinin vektörel çarpımı, büyüklüğü |𝑨| |𝑩| 𝑠𝑖𝑛 𝜃 olan, 
doğrultusu 𝑨 ve 𝑩’nin düzlemine dik ve yönü 𝑨’dan 𝑩’ye doğru döndürülen bir sağ vidanın 
ilerleme yönü olan bir üçüncü vektör olarak tanımlanır.  
 
Şu halde manyetik alandan geçen bir elektron, doğrultusu daima 𝑩 manyetik alanına ve o 
andaki 𝒗 hızına dik, büyüklüğü hızın alana dik bileşeni ile oranlı olan bir 𝑭 kuvveti ile 
hızlandırılır. 𝑭 ve 𝒗’nin doğrultuları arasındaki bu bağıntının önemli bir sonucu, parçacık 
etkileyen manyetik kuvvete hep dik olarak hareket ettiği için, üzerinde hiçbir iş 
yapılmadığıdır. Bu nedenle manyetik alan içinde hareket eden parçacığın kinetik enerjisi 
dolaysıyla hızın büyüklüğü sabit kalmalıdır (Hızın doğrultusu değişebilir). Bu deneyde bir 
elektron demetinin bu demete dik doğrultuda yönelmiş bir manyetik alan içindeki sapmasını 
gözleyeceksiniz.  

  
Şimdi Şekil-17’deki durumu inceleyelim. Tıpkı EA-1 deneyindeki gibi elektronlar, elektron 
tabancasından  

 
½ 𝑚𝑣2 = 𝑒𝑉2        (27) 

 
enerji bağıntısı ile verilen bir 𝒗 hızı ile çıkar. Bundan sonra elektron demeti, şekil düzlemine 
dik bize doğru yönelmiş düzgün bir 𝑩 manyetik alanın bulunduğu 𝑙 uzunluğunda bir bölgeye 
girer (Manyetik alanın kaynağı üzerinde ileride durulacaktır). Ortaya çıkan manyetik alan 
kuvvetinin büyüklüğü 𝐹 =  𝑒𝑣𝐵’dir ve görüldüğü gibi doğrultusu hıza hep diktir. Bundan 
başka bu kuvvetin oluşturduğu ivme 𝑣’ye hep dik olduğundan yukarıda tartışıldığı gibi 
yalnızca hızın doğrultusunu (büyüklüğünü değil) değiştirecektir ve böylece parçacık 
hareketini sabit süratle sürdürecektir. 
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Şekil-17. Katot ışını tüpünde elektronların hızına dik manyetik alan uygulanması. 
 

 
 

Şu halde elektron manyetik alan kuvvetinin etkisi altında dairesel bir yay üzerinde hareket 
eder. Merkezcil kuvvetin büyüklüğü 𝑚𝑣2/𝑅 olduğunu biliyoruz. Bu kuvvet manyetik alanın 
uyguladığı 𝑒𝑣𝐵 kuvvetine eşit olacaktır: 
   
   𝑚𝑣2

𝑅
=  𝑒𝑣𝐵  ve      𝑅 =  𝑚𝑣

𝑒𝐵
       (28) 

 
 Şekil-17’den görüldüğü gibi elektronlar manyetik alandan çıktıktan sonra ilk geldiği eksen 
doğrultusu ile 𝜃 açısı yapan bir doğru boyunca hareket eder.  
 
Bu şekilden  

𝑠𝑖𝑛𝜃 = 𝑙
𝑅

= 𝑙𝑒𝐵
𝑚𝑣

        (29) 

ile verildiğini ve alandan çıktığı noktada yanlamasına 𝑎 uzaklaşmasının  

𝑎 = 𝑅 –𝑅𝑐𝑜𝑠𝜃 =  𝑚𝑣
𝑒𝐵

(1 − 𝑐𝑜𝑠𝜃)       (30) 

olduğunu buluruz. Son olarak demet, sapmamış demet konumundan 𝐷 uzaklığında bir 
noktada perdeye vurur. Şekilden görüldüğü gibi toplam kayma  

𝐷 = 𝐿 𝑡𝑎𝑛𝜃 +  𝑎         (31)  

ile verilir. 𝜃 ve 𝑎 için yukarıda belirtilen bağıntıları bu eşitlikte yerlerine koyduğumuzda daha 
karışık bir sonuç elde ederiz. Bu deneyde açısal sapmaların küçük olması nedeniyle      
𝑠𝑖𝑛𝜃 ≈  𝑡𝑎𝑛𝜃 ≈ 𝜃, 𝑐𝑜𝑠𝜃 ≈  1 – 𝜃2/2 yaklaşıklıklarını alabiliriz. Böylece elde ettiğimiz 
sonuç oldukça basitleşmiş olur. Bu durumda 𝐷 toplam sapmasının  

𝑎 
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𝐷 = 𝐿 𝜃 + 𝑅 �𝜃
2

2
� = 𝑙𝑒𝐵

𝑚𝑣
�𝐿 + 𝑙

2
�     (32) 

 
olduğunu buluruz. Enerji bağıntısı olan Eşitlik (27)’yi kullanarak  

 

𝐷 = � 𝑙𝑒𝐵
(2𝑚𝑒𝑉2)1/2� �𝐿 + 𝑙

2
�     (33)

 
 

 

elde ederiz. Beklediğimiz gibi bu bağıntı, demet sapmasının 𝐵 manyetik alanı ile oranlı 
olduğunu gösterir. Burada 𝐷, hızlandırıcı potansiyelin karekökü ile ters oranlıdır; bu sonuç, 
Deney EA-1’deki elektrostatik sapmaya ters düşer. Orada sapma 𝑉2’in

 
karekökü ile değil 

kendisi ile ters oranlı idi. Buradaki fark manyetik alan kuvvetinin yapısından ileri gelen ek bir 
hız bağımlılığındandır. 

Yukarıda tanımladığımız ayırıcı özellikleri olan yani belli bir bölge içinde düzgün, dışında sı-
fır olan bir manyetik alanı nasıl oluşturabiliriz? Açıkça görüldüğü üzere, uzun doğru bir 
iletken telin alanının bu özeliği yoktur. Fakat alan bir noktadan başka bir noktaya doğru 
yavaşça değişir. Bununla birlikte, eğer bu tel dairesel bir halka şeklinde bükülürse akı çizgileri 
Şekil-18’de gösterildiği gibi, bu halka içerisinde yoğunlaşır ve böylece alan çember 
merkezinde halka dışındakinden daha kuvvetli olur.  

 

Şekil-18. İçinden akım geçen bir halkanın civarında oluşan manyetik alan çizgileri. 
 

Halka ekseni üzerindeki 𝑃 noktasındaki manyetik alanın   

𝐵 = �𝜇0𝐼
2𝑎
�  𝑠𝑖𝑛3𝜃          (34a) 

ifadesi ile verildiğini göstermek zor değildir (Bunun için Fundamentals of Physics - Halliday 
and Resnick kitabına bakabilirsiniz). 
 
Bu etki Şekil-19’daki gibi bir silindir üzerine yanyana dizilmiş bir kaç halkayı kullanmakla 
artırılabilir. Bu çeşit bir gerece kangal denir. 
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Şekil-19.  Bir kangalın civarında oluşan manyetik alan çizgileri. 
 
 

Açıkça görüldüğü gibi kangalın ekseni üzerindeki alanı kangalı bir halkalar dizisi olarak 
düşünüp her bir halkanın katkısını ekleyerek hesaplayabiliriz. Bu hesaplamaya göre boyu 
çapından uzun olan bir kangal içinde alan eksen boyunca ve silindir kesiti üzerinde aşağı 
yukarı düzgündür ve  
 

𝐵 =  𝜇0𝑁𝐼
𝐿

        (34b) 
 
ile verilir. Burada 𝑁 toplam sarım sayısı ve 𝐿 de kangalın uzunluğudur. 
 
Katot ışını tüpü içine bir akım kangalı yerleştirilebilir. Fakat Şekil-20’de gösterildiği gibi iki 
kangal düzenlemek daha kolaydır ve aynı sonucu verir. Görüldüğü gibi düzenlemede alan 
çizgileri yayılır ve böylece Eşitlik (34a) ile verilenden biraz daha zayıf bir alan verir, fakat bu 
alan bir kangalınkinden biraz daha geniş olan bir bölgede oluşur. Bu nedenle teorik 
önerilerimizle çok incelikli bir nicel uyuşma beklememeliyiz. Bununla birlikte demet 
sapmasının kangal akımına ve hızlandırıcı potansiyele olan bağlılığı bu farklar yüzünden 
değişmemelidir.  

 

 
 

Şekil-20.  Seri bağlı iki kangal arasındaki manyetik alan çizgileri. 
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DENEY 
 
1. MANYETİK SAPMA 

 
Elektron tabancasının elektrotları Deney EA-1 (Bakınız Şekil-8)’deki gibi bağlanmıştır. 
Saptırıcı levhalar bu deneyde kullanılmayıp toprağa bağlanmalıdır. Bu, levhalarda gereksiz 
sapmalara yol açan durgun yük birikmesini önler. 

Deneyde kullanacağımız her kangalın sarım sayısı 3000 ve direnci yaklaşık 125 Ω’dur. 
Deneyde kangalların 𝐿 uzunluğunu ölçünüz. Şekil-21’de gösterildiği gibi iki kangal alanları 
eklenebilecek şekilde seri olarak bağlanmalıdır. Bu kangallardan akım sürmek için 0-30 V’luk 
uygun bir doğru gerilim (DC) kaynağı kullanılabilir. Kangal akımını ölçmek yerine 
gösterildiği gibi 𝑉𝑠 gerilimini ölçmek daha kolay olur. Sarımların Ohm yasasına uyduğunu 
varsayarak 𝑉𝑠, kangal akımı ile ve dolayısıyla manyetik alanla orantılı olur. Bobinler 
arasındaki manyetik alanın değerini gaussmetre ile ölçünüz. 

 
Şekil-21.  Manyetik alan kangalları ve KIT yerleşiminin şematik görünümü. 

 

Demet sapmasını, 𝑉2 
hızlandırıcı potansiyelinin çeşitli değerleri için kangal geriliminin bir 

fonksiyonu olarak ölçünüz ve grafiğini çiziniz. Grafiklerin genel görünüşünün ne olacağını 
önceden kestirebilir misiniz? Daha sonra gaussmetre ile ölçtüğünüz manyetik alan değerlerine 
karşı kangal geriliminin grafiğini çiziniz. Grafiğin lineer olduğunu gördükten sonra, 𝐷’nin 
𝐵’ye karşı çizilen grafiğinin eğiminden 𝑒/𝑚 oranını saptayınız (Eşitlik (33)’ü kullanarak). 

 

2. YERİN MANYETİK ALANI  

Bu deneyde ve Deney EA-1’de saptırıcı alanlar olmayınca perdedeki noktanın yerinin 
hızlandırıcı potansiyelin değişmesi ile değişeceğini görmüş oldunuz. Bu olayın bir nedeni 
yerin manyetik alanıdır. Tüp yüzünü bir kalemle işaretleyerek hiç bir sapmanın olmadığı tüp 
doğrultusu bulabilir misiniz? Bu konumda eksen ile yerin manyetik alan doğrultusu arasındaki 
ilişki nedir?  

1 

1 

2 

2 

200 mA 
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Şimdi sapmanın en çok olduğu bir konum bulmaya çalışınız. Eşitlik (33)’ü kullanarak 𝐵 
değerini hesaplayınız. Elektrotlar ferromanyetik olan ve dolayısı ile manyetik bir engel olarak 
davranan nikelden yapılmıştır. Bundan dolayı 𝐴2’

 
den ayrılana kadar demette hiç bir önemli 

sapma olmaz. Yerin manyetik alanının doğrultu ve büyüklüğü için bulduğunuz değerleri el 
kitaplarındakilerle karşılaştırınız.  

 
 
 
SORULAR  
 
1. Elektron yükünün eksi yerine artı olduğunu varsaydık, KIT’de ne gibi değişiklikler 

yapılması gerekecekti ve demetin bir manyetik alandaki sapması nasıl değişecekti? 

 
2. Sapma açısı küçük olmak üzere demet sapmasının, manyetik alan düzgün olmasa bile 

kangal akımı ile oranlı olduğunu gösteriniz. 

 
3. Yerin manyetik alanı için bulduğunuz sonuçlar el kitabındaki değerlerle uyuşuyor mu? 

 
4. Eğer deney, manyetik alan KIT eksenine paralel olacak şekilde düzenlenecek olsaydı ne 

olurdu? Bu deneyde kullanılan aygıtla bu yapılabilir mi?  

 
5. Manyetik alana ek olarak saptırıcı levhaların bir çiftine bir gerilim uygulanırsa iki sapma 

birbirini götürür. Bu levha çifti için net sapma sağlanır ve ondan sonra hızlandırıcı gerilim 
artırılırsa ne olacaktır?  

 
6. Bir manyetik alan elektron demetinin odaklanmasında kullanılabilir mi? Deney EA-2’de 

tartışılan elektrostatik odaklamaya benzer şekilde çalışabilecek olan bir manyetik alan 
düzeneği düşünebilir misiniz?  
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Deney EA - 5  
Diyot Tüpleri ve Magnetron Koşulu  
 
GİRİŞ  
 
Bu deneyde, elektronların bir diyot lamba içindeki hareketini ele alacağız. Diyot lambanın 
temel ilkesi Şekil-22’de gösterilmiştir. Genellikle katot ve anot denilen iki elektrot havası 
alınmış bir cam balon veya tüp içerisine yerleştirilmiştir. Şekilden görüldüğü gibi katot ya 
doğrudan akım geçirilerek veya ayrı bir fitil ile dolaylı olarak 2500 K basamağında yüksek bir 
sıcaklığa kadar ısıtılır. Isıtılan katot termiyonik yayınlama denilen olayla elektron püskürtür. 
Metal yüzeyinden kurtulmaları için elektronlar, bir potansiyel enerji (iş fonksiyonu) engelini 
aşmak zorundadırlar, bunun için gerekli enerji bazı elektronlara termik uyarma ile verilir. 
Katot ne kadar çok ısınırsa birim zamanda püskürtülen elektron sayısı o kadar çok olur.  

   
Şekil-22. Diyot lambanın bağlanışı ve yapısı  

 
 

Elektronlar katottan bir kez kurtulduktan sonra tüpün içindeki boşlukta serbestçe hareket 
ederler. Şekil-22’de gösterildiği gibi bir potansiyel farkı uygulanırsa katot ve anot arasında 
ortaya çıkan elektrik alanı elektronları anoda doğru sürükler. Elektronlar dış devreden 
dolanarak katoda geri dönerler. Böylece doğan akım ölçülebilir ve akımın öteki değişkenlere 
olan bağlılığı incelenebilir.  

Katot ile anot arasındaki gerilim oldukça küçükse, çıkan elektronlar katot çevresinde uzay 
yükü adı verilen bir birikinti meydana getirirler. Katoda yakın bölgedeki bu eksi yükle 
değişen elektrik alanı çıkan elektronları tekrar katoda doğru çevirmeye çalışır. Gerilim 
yükselince uzay yükünün kenarındaki elektronlar anoda doğru daha hızlı hareket ederler; 
böylece uzay yükü azalır ve akım artan potansiyel ile artar. Bu durumda akımın uzay yükü ile 
sınırlanmış olduğunu söyleyebiliriz. Şeki1-22’de gördüğümüz basit düzlemsel geometri için 
ve anot ile katodun aynı eksenli silindirler olduğu geometri için de 𝐼 akımının 𝑉 
potansiyelinin üç bölü iki (3/2) kuvveti ile oranlı olduğu gösterilebilir. Yani, akım uzay yükü 
ile sınırlanmış olunca 

𝐼 =  (𝑠𝑎𝑏𝑖𝑡) 𝑉3/2        (35)  
 
dir. Bu önemli bağıntıya Langmuir-Child yasası veya “üç-yarım-kuvvet” yasası denir.  
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𝑉 arttıkça uzay yükü hemen hiç uzay yükünün kalmadığı bir noktaya erişilinceye kadar azalır. 
Bu durumda katottan çıkan elektronların hiçbiri katoda geri döndürülmez ve akım tümüyle 
elektronların katoddan yayınlanma hızına bağlı olur. Bu noktaya erişildikten sonra 𝑉’nin daha 
fazla artması 𝐼’yı artırmaz. Beklenildiği gibi maksimum yayınlanma hızı katod sıcaklığı ile 
hızla artar. Tipik bir diyot lambanın  𝐼 − 𝑉 grafiği Şekil-23’de gösterilmiştir. Burada akım, 
çeşitli katot sıcaklıkları için gerilimin bir fonksiyonu olarak çizilmiştir. 𝑇’nin her değerinde 
yeterince küçük 𝑉 için 𝐼’nın uzay yükü ile sınırlı olduğunu fakat daha büyük 𝑉 değerleri için 
yayınlama ile sınırlı olduğunu göstermektedir. 𝑇 arttıkça yayınlama ile sınırlı olma durumuna 
geçiş gittikçe yüksek 𝑉 değerlerinde olur. Maksimum akım (yayınlama ile sınırlı olan) 
Richardson - Dushman eşitliği ile verilir.  
 

 𝐼 =  𝐴𝑇2𝑒−Φ/𝑘𝑇        (36) 
  
Burada 𝐴 bir sabit, 𝑇 mutlak sıcaklık, Φ maddenin iş fonksiyonu (bir elektronun yüzeyden 
kurtulması için gerekli minimum enerji) ve 𝑘 Boltzmann sabitidir. 𝑘𝑇 niceliği termik uyarıma 
ait ortalama enerjiyi belirler; şu halde akımın Φ/𝑘𝑇 oranına bağlı olması akla yatkındır.  

 
Şekil-23.  Ferranti GRD7 diyot lambasının sabit T sıcaklıklarında I-V eğrileri. 

(http://www.shinjo.info/frank/sheets/074/g/GRD7.pdf’den  alınmıştır.) 
 
Diyot tüpünün uygulamadaki yerlerinden biri doğrultucu olarak kullanılmasıdır; elektron akısı 
katoddan anoda doğrudur ve zıt yönde olamaz. Bunların özel bir uygulama yeri magnetron 
lambalarıdır ve yüksek frekans osilatörü olarak kullanılır. Magnetronun işleyişi bazı yönleri 
ile burada incelenecektir.  

Bu deneyde kullanılan Ferranti GRD7 diyodunun geometrisi ve resmi Şekil-24’de 
gösterilmiştir. Katot doğrudan geçirdiği akımla ısıtılan 0,125 mm çapında tungsten bir teldir. 

http://www.shinjo.info/frank/sheets/074/g/GRD7.pdf'den
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Anot, iç çapı 6,5 mm ve uzunluğu 14,5 mm olan, ekseni katotla çakışan bir silindirdir.   
Uçlardaki iki silindire koruma bilezikleri denir, bunlar ortadaki parça ile aynı potansiyelde 
tutulurlar fakat ona elektrikçe bağlı değillerdir. Bunların görevi ortadaki parçanın uçlarına 
yakın bölgede alan “kaçaklarını” olabildiğince azaltmak ve böylece ortadaki parçanın içindeki 
alanı sonsuz uzunlukta bir silindir ile telin oluşturduğu alanla hemen hemen aynı yapmaktır.  
 

 
 

Şekil-24. Ferranti GRD7 diyot lambasının şematik geometrisi ve resmi. 
 
Şimdi, katot ile anot arasındaki 𝑉 potansiyeli ile oluşan radyal elektrik alanına ek olarak 
silindir ekseni boyunca düzgün bir 𝑩 manyetik alanını uyguladığımızı düşünelim. Artık 
elektron hareketi daha karışıktır, fakat incelenmesi çok daha ilginçtir. Elektronlar katoddan 
ayrılıp anoda doğru hızlanmaya başladıklarında 𝑭 = –  𝑒𝒗 𝒙 𝑩 manyetik alan kuvvetinin 
etkisi altında kalırlar. Bu manyetik kuvvetin etkisi Şekil-25’de gösterilmiştir; açıkça 
görüldüğü gibi bu etki elektron yörüngesini büker. 𝑩 alanı büyüdükçe kuvvet orantılı olarak 
artar ve elektronlar daha keskin biçimde bükülür. Sonunda 𝑩’nin kritik bir değerinde elektron 
yörüngesi anoda ulaşmadan geriye katoda doğru bükülür. Bu duruma erişildiğinde anot 
akımında birden düşme olur.  

 
 
 
 
 
 

Şekil-25. Manyetik alan içindeki 
elektronların izlediği yolun manyetik 
alan şiddetine bağlı davranışı. 
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Potansiyel artırıldıkça 𝐵’nin kesilme değerinde bir değişme bekleriz, fakat bunun hangi yönde 
olduğu açık değildir. Artan 𝑉, elektronları anoda doğru sürükleyen elektriksel kuvveti artırır, 
fakat aynı zamanda onların hızlarını da artırdığından manyetik (onları geriye katoda doğru 
çevirmeye çalışan) kuvvet de büyür. Bununla birlikte elektrik alanı 𝑉 ile doğru oranlı olarak 
arttığı halde elektron hızları, ½ 𝑚𝑣2 kinetik enerjisi 𝑉 ile orantılı olduğundan yalnızca 𝑉1/2 
ile orantılı olarak artar. Bunun için 𝑉 artırılınca kesilme için daha büyük bir 𝐵 değeri bekleriz. 
Daha ayrıntılı bir inceleme bu anlayışı destekler. Hesaplama B’nin kesilme değerinin 𝑉’ye 

     𝐵 =  �8𝑚𝑉
𝑒𝑏2

�
1/2

        (37) 
 
 

eşitliği ile bağlı olduğunu ortaya çıkarır. Burada 𝑏 anodun yarıçapıdır. Bu ifadeye magnetron 
koşulu denir. 
 
Eşitlik (37)’nin çıkarılması, gerçekte bir klasik mekanik problemidir. Elektronların tekrar 
katoda dönmeden ulaşabildikleri maksimum 𝑟 =  𝑎 uzaklığını bulmalıyız. Bu noktada 𝑟’nin 
artması durur ve dolayısıyla 𝑑𝑟/𝑑𝑡 o anda sıfır olur. Özellikle 𝑑𝑟/𝑑𝑡’nin tam anot yüzeyinde 
(𝑟 = 𝑏) sıfır olduğu kesilme halinde B’nin kritik değerini bulmak istiyoruz. İzleyeceğimiz yol 
hızın açısal bileşenini herhangi bir andaki 𝑟 yarıçapı cinsinden belirtmek için 𝑭 = 𝑚𝒂 hareket 
Eşitliğini kullanmak ve ondan sonra 𝑑𝑟/𝑑𝑡 ile 𝑟 arasında bir bağıntı bulmak için de enerji 
bağıntısını kullanmak olacaktır. Son olarak da 𝑑𝑟/𝑑𝑡’nin 𝑟 = 𝑏 uzaklığında sıfır olması için 
gerekli 𝐵 değerini bulacağız.  
 
Bir elektronun konumunu belirtmek için Şekil-26’da gösterildiği gibi 𝑟, 𝜃 ve 𝑧 silindirik 
koordinatlarını kullanacağız. Aynı zamanda hızın, ivmenin ve çeşitli alanların bileşenlerini 𝑟, 
𝜃 ve 𝑧 doğrultularındaki bileşenleri cinsinden vereceğiz. 

 

 
Şekil-26. Polar koordinatlar. 

 
  

Hız ile ivmenin bileşenleri silindirsel koordinatlarda  

𝑣𝑟 = 𝑑𝑟/𝑑𝑡                 𝑎 =  𝑑2𝑟/𝑑𝑡2 –  𝑟 (𝑑𝜃/𝑑𝑡)2 
𝑣𝜃 = 𝑟𝑑𝜃/𝑑𝑡             𝑎𝜃  =  𝑟 𝑑2𝜃/𝑑𝑡2 + 2(𝑑𝑟/𝑑𝑡)(𝑑𝜃/𝑑𝑡) 
𝑣𝑧 = 𝑑𝑧/𝑑𝑡                𝑎 𝑧 =  𝑑2𝑧/𝑑𝑡2        (38) 

ile verilir. Bu bağıntılar çoğu klasik mekanik kitabında türetilmiştir. 𝑧 doğrultusunda hiç bir 
ilk hız ve kuvvet olmadığından 𝑣𝑧  ve 𝑎𝑧 her zaman sıfırdır.  
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Görüldüğü gibi manyetik alan +𝑧 doğrultusundadır ve manyetik alan kuvvetinin bileşenlerini 
çıkarabiliriz.  

    𝑭 =  −𝑒𝒗 ×  𝑩  
olduğuna göre   
    𝐹𝑟 = –  𝑒𝑣𝜃𝐵 = –  𝑒𝐵𝑟 𝑑𝜃

𝑑𝑡
  

     𝐹𝜃 = 𝑒𝑣𝑟 𝐵 = 𝑒𝐵 𝑑𝑟
𝑑𝑡

 
        𝐹𝑧 = 0             (39) 

buluruz. 𝜃 doğrultusundaki tek kuvvet manyetik alan kuvvetinin 𝜃 bileşenidir. Böylece         
𝐹𝜃  =  𝑚𝑎𝜃  

hareket eşitliği  
 

𝑒𝐵 𝑑𝑟
𝑑𝑡

= 𝑚 �𝑟 𝑑
2𝜃
𝑑𝑡2

+ 2 𝑑𝑟
𝑑𝑡

𝑑𝜃
𝑑𝑡
�        (40)  

 
şeklini alır. Bu eşitliğin her iki tarafını r ile çarpıp terimleri aşağıdaki gibi düzenleyerek  

 
𝑚 �𝑟2 𝑑

2𝜃
𝑑𝑡2

+ 2𝑟 𝑑𝑟
𝑑𝑡

𝑑𝜃
𝑑𝑡
� − 𝑒𝐵𝑟 𝑑𝑟

𝑑𝑡
= 0         (41)  

 
elde ederiz. Bu bağıntının yakından incelenmesi sol tarafın yalnızca 
[𝑚𝑟2 (𝑑𝜃 𝑑𝑡)⁄  –  ½ 𝑒𝐵𝑟2] niceliğinin zamana göre türevi olduğunu gösterir. Zamana göre 
türev sıfır olduğu için nicelik sabit olmalıdır. Bu sabit değeri 𝐿 ile gösterince  

       𝑚𝑟2 𝑑𝜃
𝑑𝑡
− 1

2
𝑒𝐵𝑟2 = 𝐿 = 𝑠𝑎𝑏𝑖𝑡                            (42) 

 
elde ederiz. Bu bağıntının ilk teriminin bir elektronun eksene göre açısal momentumu 
olduğuna dikkat ediniz.  
𝐿’yi hesaplamak için elektronların katoddan (𝑟 =  𝑎) önemsenmeyecek bir hızla 
ayrıldıklarını göz önünde tutunuz. Böylece 𝑟 =  𝑎’da 𝜃 =  0 almalıyız. Bu değerleri Eşitlik 
(42)’de yerlerine koyunca  

                                     𝐿 =  1
2
𝑒𝐵𝑎2

         (43) 

elde edilir. Bu sonucu Eşitlik (42) ile birleştirip 𝑑𝜃/𝑑𝑡’yı çözünce;  

                                  𝑑𝜃
𝑑𝑡

 = 𝑒𝐵
2𝑚

 �1 − 𝑎2

𝑟2
�        (44) 

 
elde edilir. Şimdi enerji bağıntısına tekrar dönelim. Eşitlik (38) ile verilen hız bileşenlerinden 
kinetik enerjinin ½𝑚((𝑑𝑟/𝑑𝑡)2  +  𝑟2 (𝑑 𝜃/𝑑𝑡)2) olduğunu buluruz. Potansiyel enerji 
– 𝑒𝑉(𝑟)’dir. Burada 𝑉(𝑟), 𝑟’nin bir fonksiyonu olan elektrostatik potansiyeldir. 𝑉, 𝑟 =  𝑎’da 
sıfır olacak şekilde tanımlanınca toplam enerji sıfır olur ve  
 

1
2
𝑚 ��𝑑𝑟

𝑑𝑡
�
2

+ 𝑟2 �𝑑𝜃
𝑑𝑡
�
2
� − 𝑒𝑉(𝑟) = 0     (45) 

 
enerji eşitliğini elde ederiz. Bu, Eşitlik (44) yardımıyla  
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   1
2
𝑚 ��𝑑𝑟

𝑑𝑡
�
2

+ 𝑟2 �𝑒𝐵
2𝑚
�
2
�1 − 𝑎2

𝑟2
�
2
�  −  𝑒𝑉(𝑟) = 0       (46) 

şekline girer.  

Bundan sonra, yukarıda gözlendiği gibi, tam kesilmedeki B alan şiddeti 𝑑𝑟/𝑑𝑡’nin 𝑟 = 𝑏’de 
sıfır olması koşulu ile bulunur, bu koşul sağlandığında elektronlar anoda ancak ulaşır (kesin 
olarak değil). 𝑉(𝑟) potansiyelinin 𝑟 = 𝑏’de, katoddan anoda 𝑉 toplam potansiyel artması 
olmasını göz önünde tutup bu değerleri yerlerine koyunca  

1
2
𝑚 �0 + 𝑏2 �𝑒𝐵

2𝑚
�
2
�1 − 𝑎2

𝑏2
�
2
�  −  𝑒𝑉 = 0      (47) 

 
elde ederiz. Şimdiki durumda 𝑏, 𝑎’dan çok daha büyük olduğu için 𝑎2/𝑏2 terimini 
önemsememekle çok küçük bir hata yapmış oluruz, böylece  

                  1
2
𝑚𝑏2 �𝑒𝐵

2𝑚
�
2
−  𝑒𝑉 = 0         (48) 

elde ederiz. 𝐵’yi çözünce anot akımını kesmek için gerekli kritik alanın  

𝐵 = �8𝑚𝑉
𝑒𝑏2

�
1/2

        (49) 

ile verildiğini ve bunun Eşitlik (37) ile uyuştuğunu görürüz.  

Bu çeşit elektron hareketi, magnetron denilen son derece yüksek frekanslı (10
10 

Hz 
basamağında) elektromanyetik dalgaları üretmek için kullanılan bir çeşit elektrik 
titreştiricilerinde görülür. Magnetrondaki elektrotlar rezonans boşluğu denilen kapalı bir yerin 
bir parçasını oluşturur ve dönen elektronlar elektromanyetik salınımları bu boşlukta meydana 
getirir.  
 
 
 
DENEY 
 
1. DİYODUN ÖZELİKLERİ  

  
Diyodun özeliklerini incelemek için Şekil-27’de gösterilen devre önerilebilir. Fitil (katot)    
6,3 V’luk güç kaynağı ile ısıtılıp sıcaklığı güç kaynağına seri olarak bağlı bir reosta 
yardımıyla denetlenebilir. Anodun orta kesiminden geçen akım, seri bağlı 100 kΩ’luk 
dirençteki gerilim düşmesini ölçerek bulunabilir. 

 
Anot potansiyelini yaklaşıkça 100 V alınız ve fitilin sıcaklığını orta anot akımı aşağı yukarı   
1 mA oluncaya kadar artırınız. Eğer bir optik pirometre varsa fitil sıcaklığını ölçünüz. 𝐼’yı 
𝑉’nin bir fonksiyonu olarak ölçerek grafiğini çiziniz. Anot gerilimini yeniden yaklaşıkça 100 
𝑉 yapıp fitil sıcaklığını orta anot akımı aşağı yukarı 5 mA oluncaya kadar artırınız ve 
yukarıdaki ölçmeleri tekrarlayınız. Son olarak en büyük fitil sıcaklığında deneyi bir kez daha 
tekrarlayınız.  
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Şekil- 27. Diyot lamba ile magnetron olayını incelemek için kullanılan devrenin bağlantıları.   
 

 
UYARI  

B+ ucu toprağa bağlanmış olduğundan voltmetre şasisi toprak potansiyelinde olacaktır. 
Bununla birlikte fitili besleyen uçlar ve dirençler, 300 V’a kadar çıkan bir eksi potansiyel de 
tutulur. Bu nedenle dikkatli olunuz.  

 
2. LANGMUIR-CHILD YASASI  

Elde ettiğiniz değerleri inceleyerek elektron salma sınırı orta gerilimde bulunan (örneğin 100 
ile 150 V arasında) bir sıcaklıkta, 𝐼 ile bunun karşılığı olan 𝑉’den oluşan bir değerler takımı 
seçip bunları bir Log-Log grafik kağıdı üzerinde gösteriniz. Eğer varsa, hangi gerilim 
bölgesinde Eşitlik (35)’e uyulur?  

 
1. RICHARDSON - DUSHMAN EŞİTLİKİ  

 
Her sıcaklıkta salma ile sınırlı akımın en büyük değerini olabildiğince kesinlikle bulunuz. 
𝐼𝑚𝑎𝑥/𝑇2

 
yi 1/𝑇’nin fonksiyonu olarak çiziniz. Eğer bir optik pirometre yoksa fitil 

sıcaklıklarını Şekil-28’i kullanarak fitil akımından yaklaşık olarak bulabilirsiniz. Eğer Eşitlik 
(36) sağlanıyorsa bir doğru elde etmelisiniz. (Niçin?) Eğim ile doğrunun ordinatı kestiği 
yerden yararlanarak 𝐴 ve Φ sabitlerini elde edebilmelisiniz.  
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4. MAGNETRON HALİ  

“Magnetron” hareketini ve akım kesilmesini gözlemek için yukarıda kullanılan devreyi 
kullanınız, yalnız Deney EA-3 ve EA-4’de olduğu gibi diyodu, bir güç kaynağı ile beslenen 
bir akım kangalının içine yerleştiriniz. B büyüklüğü bu deneylerde belirtildiği gibi kangal 
akımından elde edilir.  

İç çapı 8,0 cm, dış çapı 12,5 cm olan 10 cm uzunluğundaki bir kangalın merkezindeki alan, 
ideal çok uzun bir kangal için beklediğimizin yaklaşık olarak 0,7’si kadardır.  

Kesilme alanını diyoda uygulanan çeşitli potansiyel değerleri için bulunuz. Eşitlik (37)’yi 
sınamak için 𝐵2’yi 𝑉’nin bir fonksiyonu olarak çiziniz. Bu grafiği e/m oranını bulmak için 
kullanınız.  
 

 
 

Şekil-28. Ferranti GRD7 diyodunun fitil akımı-fitil sıcaklığı verisi 
(http://www.shinjo.info/frank/sheets/074/g/GRD7.pdf’den  alınmıştır.) 

 
 
SORULAR 
 
1. Bir diyot Ohm yasasına uyar mı? Açıklayınız. 
2. Eğer akım, salma ile sınırlı ise Eşitlik (35) geçerli midir? Açıklayınız. 
3. Elektron salma ile sınırlı durumda diyodun silindirsel elektrotlar arasındaki potansiyel  

 𝑉(𝑟)  =  𝑉 𝑙𝑛(𝑟/𝑎)/𝑙𝑛(𝑏/𝑎) ile verilir. Bu bağıntıyı çıkarınız. Akım yükü ile sınırlı 
olduğunda bu geçerli midir?  Açıklayınız. 

4. Şekil-27’de fitil devresindeki 100 Ω’luk iki direncin görevi nedir?  
5. Şekil -25’deki manyetik alanın doğrultusu ters çevrilirse ne olur?  
6. Eşitlik (49)’un geçerliği akımın uzay yükü ile veya elektron salma ile sınırlı olup 

olmadığına bağlı mıdır? Açıklayınız. 
7. Koruyucu bilezikler diyoddan çıkarılsaydı kesilme olayının nasıl değişmesini beklerdiniz? 
8. Eğer bir miktar hava sızmış olsaydı diyodun davranışı nasıl değişecekti? Yani diyodun 

havası niçin boşaltılmalıdır? Diyodun davranışının tam olabilmesi için kalan basıncın en 
büyük değeri ne olmalıdır? 

http://www.shinjo.info/frank/sheets/074/g/GRD7.pdf'den
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Elektrik Devreleri 
GİRİŞ 

Bu deney serisinde, gerilim ve akımın zamana bağlı olarak değiştiği çeşitli elektrik devrelerinin 
davranışlarını inceleyeceğiz. Bu çalışmalarda kullanılacak en önemli araç osiloskoptur. 
Osiloskobunun ana parçası Elektronlar ve Alanlar deneylerinde elektron hareketini incelemede 
kullanılana benzer bir katot ışını tüpüdür. İleride göreceğimiz gibi elektrik devrelerinin çabuk 
değişen gerilimlerinin gözlenmesi ve ölçülmesi için osiloskop çok kullanışlı bir araçtır. Bu 
deneylerde göz önüne alınan devreler direnç, sığa, indüktans, üreteç, sinüs veya karedalga gerilim 
kaynaklarının (osilatör) çeşitli düzenlenişlerinden oluşur. Bu aygıtların belirgin özelliklerini kısaca 
gözden geçirmek yerinde olur.  

DİRENÇ  

Kusursuz bir direncin özelliği, uçları arasında bir V potansiyel farkı uygulandığında dirençten 
geçen I akımının V potansiyel farkı ile doğru oranlı olmasıdır: 

𝑉 =  𝐼𝑅        (1) 

𝑅 ile gösterilen orantı sabitine devre elemanının direnci denir. Sabit sıcaklıkta bu bağıntı Ohm 
yasası olarak bilinir.  

𝑉’nin volt 𝐼’nin amper olarak ölçüldüğü MKSA birimler sisteminde direnç birimi Ω ile gösterilen 
ohm’dur. kΩ (103 

ohm) ve MΩ (106 
ohm) birimleri de çok kullanılır. Dirençlerin başka bir özelliği, 

özelliklerini koruyabildiği maksimum güç (𝐼2𝑅) olarak tanımlanır ki buna güç sınırı denir. Bu 
gücün aşılması direnci beklenilmeyen biçimde değiştirilebilir veya büsbütün bozabilir. 
Deneylerimizdeki elektronik devrelerde 1

2
 veya 1 W (watt) gücünde dirençler çok kullanılacaktır. 

Bu dirençler çoğunlukla karbon-kil karışımının pişirilmesiyle oluşan sert seramik maddelerden 
yapılır. Direncin değeri bileşime giren maddelerin oranlarının değiştirilmesi ile ayarlanabilir. 
Dirençler, Şekil-1’deki renk halkaları gösterimlerine göre işaretlenirler. Örneğin, 56 000 Ω ± 
%10’luk bir direncin renkleri yeşil, mavi, turuncu, gümüş olacaktır (okuma uçtan içe doğrudur).  

SIĞA  

Bir sığa (kondansatör) içinde yük biriktirilen bir aygıt olarak düşünülebilir. Bir +Q yükü bir 
levhaya, – Q yükü de ötekine yüklenince levhalar arasında oluşan V potansiyel farkı Q ile oranlı 
olur. Bu orantı  

𝑄 =  𝐶𝑉        (2) 

bağıntısı ile verilir. Burada 𝐶 aygıt için belirtgen bir sabittir ve buna aygıtın sığası denir. MKSA 
birimlerinde 𝑄, coulomb olarak ölçülür ve sığaya karşılık gelen MKSA birimi de farad (kısaltılmışı 
𝐹)’dır. Farad, son derecede büyük bir sığa birimidir; bu nedenle genellikle daha küçük µ𝐹(10-6𝐹), 
𝑛𝐹 (10-9𝐹) ve 𝑝𝐹 (10-12F) birimleri kullanılır. Sığalar çoğunlukla dar ince iki aluminyum yaprak ile 
aralarına yalıtkan olarak konulan mylar adlı bir plastik filmin oluşturduğu sandviçi sigara gibi sarıp 
plastikle kaplayarak yapılır. Kondansöterler sığasından başka uygulanabilecek bir anlık büyük 
gerilime göre de değerlendirilirler. Bu gerilimin aşılması, dielektriğin kendini koyuvermesine ve 
yalıtkanın delinmesine bu da sığanın işe yaramaz hale koyan bir kısa devrenin meydana gelmesine 
yol açar. 100 V’luk bir sığa için mylar yalıtkanın kalınlığı yaklaşık 10 µm’dir. 
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4 band renk kodlama 5 band renk kodlama 

  

RENKLER 
KATSAYI değeri 

Çarpan Tolerans Sıcaklık  
katsayısı 1. 

band 
2. 
band 

3. 
band 

Siyah 0 0   1     
Kahverengi 1 1 1 10 ± %1 100 ppm 
Kırmızı 2 2 2 100 ± %2  50 ppm 
Turuncu 3 3 3 1k   15 ppm 
Sarı 4 4 4 10k   25 ppm 
Yeşil 5 5 5 100k ± %0.5    
Mavi 6 6 6 1M ± %0.25    
Mor 7 7 7 10M ± %0.10    
Gri 8 8 8   ± %0.05    
Beyaz 9 9 9       
Altın       0.1 ± %5    
Gümüş       0.01  ± %10    
Renksiz          ± %20    

ŞEKİL-1. Direnç renk kodları. 

İNDÜKTANS  

İndüktans, iletken demirden veya demir tozundan çekirdek üzerine sarılmış veya içinde hiçbir şey 
bulunmayan bir tel kangaldır. Kangaldan geçen değişen bir akım, kangal içinde değişen bir 
magnetik akı oluşturur. Bu değişme uçlar arasında akımın 𝑑𝐼/𝑑𝑡 değişme hızı ile oranlı bir 𝑉 
geriliminin oluşmasını sağlar. Bu bağıntı  

𝑉 =  𝐿 𝑑𝐼/𝑑𝑡                                (3) 

denklemi ile belirlidir, burada 𝐿’ye indüksiyon katsayısı denir ve aracın sabit bir belirgenidir. 
İndüksiyon katsayısı MKS birim sisteminde 𝐻 olarak kısaltılan henry’dir. Genellikle 𝑚𝐻 (10-3 

𝐻) 
ve µ𝐻(10-6𝐻) birimleri kullanılır.  

ÜRETEÇ 

Kusursuz bir üreteç, çıkış uçları arasında aygıtın içinden geçen akıma bağlı olmayan sabit bir 
potansiyel farkı oluşturan bir aygıttır. En çok kullanılan üreteçler pillerdir. Her pilin aşağı yukarı 
1,5 V’luk bir potansiyeli vardır. Buna göre, 45 V’luk bir bataryanın seri bağlı 30 pili var demektir. 
Kullandığımız üreteçlerde potansiyel, akımdan büsbütün bağımsız değildir, fakat bu üreteçlerin 
davranışı, potansiyeli sabit olan kusursuz bir bataryaya iç direnç denilen belli bir direncin seri 
bağlanması ile anlatılabilir. Bir kuru pilin iç direnci yeni iken 0,1 µΩ basamağındadır ve bu direnç 
zamanla ve kullanma ile artar.  
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Devrelerin çözümlenmesinde kullanılan temel fizik ilkeleri Kirchoff’un devre kurallarıdır: 1-
Kapalı herhangi bir ilmek çevresinde potansiyel farklarının cebirsel toplamı sıfır olmalıdır. 2-
Herhangi bir kavşağa yönelmiş akımların cebirsel toplamı sıfır olmalıdır. Bu iki yasa ile yukarıda 
tanımlanan devre aygıtlarının belirtgenleri devre davranışını incelemekte tam bir teorik temel 
oluştururlar.  

Bu deneylerle yukarıda tartışılan devre elemanlarına ek olarak kullanılacak iki araç ise voltmetre 
ve işaret üretecidir (osilatör). Voltmetre, adının belirttiği gibi bir devrenin iki noktası arasındaki 
gerilimi (potansiyel farkını) ölçer. Bir devreye bağlanan voltmetrenin devrenin bir parçası olduğu 
unutulmamalı ve buna göre voltmetreden geçen akım göz önünde tutulmalıdır. Voltmetreden geçen 
akımın değeri iç direncine bağlıdır. Kullandığımız voltmetrelerin iç dirençleri ölçü bölgesine ve 
aygıtın yapım ayrıntılarına bağlı olarak yaklaşık 10

 
kΩ ile 10 MΩ arasında değişir. 
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Deney ED – 1 
Direnç - Sığa (RC) Devreleri  
GİRİŞ  

Bu deneyde, seri bağlı direnç ve sığalardan oluşan devrelerin davranışını inceleyeceğiz. Önce 
devrenin uygulanan sabit bir gerilim altında tepkisini sonra da değişen sinüssel bir gerilime verdiği 
tepkiyi inceleyeceğiz.  

Önce bir batarya, bir direnç, bir sığa ve bir voltmetre (V ile gösterilmiştir) ile bir anahtardan oluşan 
Şekil-2’deki devreyi ele alalım.  

 

ŞEKİL-2 

Anahtar kapatılınca sığa, bataryanın 𝑉0  
potansiyeline erişinceye kadar çabucak yüklenir.  

Her iki levhadaki 𝑄0 
yükünün büyüklüğü Eşitlik-2’ye göre  

𝑄0 =  𝐶𝑉0        (4) 

dir. Anahtarın açıldığı andaki durum Şekil-3’de gösterildiği gibidir. Sığadaki gerilim voltmetre-
direnç kolu üzerinde de görülür ve bu koldan bir akımın geçmesine yol açar. Bu akım sığadaki yükü 
azaltır, bu da, sığanın potansiyelini ve dolayısı ile de akımı azaltır.  

 

ŞEKİL-3 

Böylece 𝑄 yükü, önce çabuk sonra daha yavaş olarak azalır; buna karşılık başlangıçta anahtar 
açıldıktan hemen sonra akımın değeri oldukça büyüktür, fakat sonra azalır ve sığanın büsbütün 
boşalması ile sıfıra yaklaşır. Böylece sığadaki yük zamanla Şekil-4’de gösterildiği gibi değişir. 
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ŞEKİL-4 

Bu devreyi daha nicel olarak çözümlemek güç değildir. Bir anlık yükü, akımı ve potansiyeli sırası 
ile 𝑄, 𝐼 ve 𝑉 ile gösterelim; yalnız bu üç niceliğin hepsinin de değişken, yani zamanın fonksiyonu 
olduklarını göz önünde tutalım. Önce, 𝐼 akımı, tamamen sığanın boşalmasından ileri geldiğinden 
yalnızca yükün aktarılma hızıdır ve  

𝐼 =  −𝑑𝑄/𝑑𝑡       (5) 

denklemi yazılabilir. Akım bir anlık 𝑉 potansiyeline ve devrenin direncine bağlıdır. Seri bağlı 
direnç ve voltmetrenin iç direnci ile birlikte toplam direncini 𝑅 ile göstererek, 

𝐼 =  𝑉 / 𝑅       (6) 

 denklemi yazılabilir. Son olarak V potansiyeli herhangi bir anda sığa üzerindeki Q yüküne 

𝑉 =  𝑄/𝐶       (7) 

ile bağlıdır. Eşitlik (5) ve (6)’nın sağ yanlarını eşitleyip Eşitlik (7)’den bulunan V’yi yerine koyarak  

𝑑𝑄/𝑑𝑡 =  −𝑄/𝑅𝐶      (8) 

denklemini elde ederiz. Daha önce belirtildiği gibi, bu yükün herhangi bir anda azalma 
çabukluğunun o andaki geride kalan yük ile oranlı olduğunu gösterir.  

Değişme hızı (yani türevi) kendisi ile oranlı olan tek fonksiyon üstel fonksiyondur. Özellikle, t = 0 
anında yükün Q

0 
ilk değerini alma zorunluğu göz önünde tutulursa Eşitlik (8)’i sağlıyan fonksiyon 
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𝑄 =  𝑄0𝑒
− 𝑡
𝑅𝐶        (9)  

olur. Okuyucunun, Eşitlik (9)’un diferansiyelini alıp Eşitlik-8’de yerine koyarak bunun eşitliği 
gerçekten sağladığını göstermesi yerinde olur. Şekil- 4, Eşitlik-9’un çizimidir, buradaki koordinat 
eksenleri Q ve t’nin kendileri değil 𝑄/𝑄0 ve 𝑡/𝑅𝐶 oranlarıdır. Bu değişikliğin üstünlüğü bu 
oranların boyutsuz yani birimsiz sayılar olmasıdır.  

RC’ye devrenin zaman sabiti veya gevşeme (relaxation) zamanı denir. Eşitlik-9’un gösterdiği gibi, 
𝑅𝐶’ye eşit bir t süresi sonunda yük, başlangıçtaki değerinin 𝑄/𝑄0  = 𝑒−1 = 0,368 veya %36,8’ine 
düşer. Bununla ilgili ve genellikle deneyle daha kolay ölçülebilen başka bir nicelik, Q’nun ilk 
değerinin yarısına düşmesi için gerekli zamandır. Bu zamanı T

1/2 
ile göstererek  

½  = 𝑒−𝑇1/2/𝑅𝐶       (10) 

bağıntısını elde ederiz. Her iki tarafın e tabanına göre logaritmasını alıp yeniden düzenlersek  

𝑇1/2 =  𝑅𝐶 𝑙𝑛2 =  0,693 𝑅𝐶            (11) 

buluruz. Bu süreye yarı ömür denebilir.  

ELEKTROMEKANİKSEL BENZETİŞLER  

Elektrik devreleri ve mekanik dizgeler (sistem) arasında ilginç ve yararlı birçok benzerlikler vardır. 
Bunlardan en basiti, bir kapı - kapayıcısının basitleştirilmiş şekli olan Şekil- 5’de gösterilen 
mekanik dizge ile RC devresi arasındaki bağıntıdır. Delikli piston harekette iken yağ deliklerden 
geçmek zorundadır. Bunun bir sonucu olarak yalnız yağ viskozluğundan doğan hıza bağlı bir 
direnme (karşı koyma) kuvveti ortaya çıkar. Çok yüksek olmayan hızlar için bu kuvvet, hız ile 
oranlıdır ve F = – bv ile gösterilebilir. Burada b bir orantı sabitidir ve eksi işaret, kuvvetin harekete 
hep karşı koyduğunu anlatır.  

 

ŞEKİL-5 
Hareketli pistona yay da bir kuvvet uygular. Piston, denge konumundan bir 𝑥 uzaklığı kadar 
ayrıldığında yay bir 𝐹 = –  𝑘𝑥 kuvveti uygular, burada 𝑘 yayın kuvvet sabitidir. İkinci Newton 
yasasına göre, pistona etkiyen bu iki kuvvetin toplamı pistonun kütlesi ile ivmesi çarpanına eşit 
olmalıdır. Eğer kütle önemsenmeyecek kadar küçükse iki kuvvetin toplamı sıfırdır ve  

                            –  𝑘𝑥 −  𝑏𝑣 =  0     𝑣𝑒𝑦𝑎        𝑑𝑥
𝑑𝑡

=  −𝑘
𝑏
𝑥                  (12) 

elde ederiz. Bu diferensiyel denklemin şekli sığadaki yük için yazılan Eşitlik- 8 ile tıpatıp aynıdır. 
Burada x yer değiştirmesi Q’ye, v hızı da I akımına karşılıktır. Bu parametreler arasında da benzer 
bağıntılar vardır. Sönüm sabiti 𝑏, 𝑅 direncine, yayın kuvvet sabiti 𝑘 ise 𝐶 sığasının tersine (1/C) 
karşılıktır.  
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Öyle ise bu çözümleme, kapı kapayıcısının denge konumundan bir 𝑥0 
ilk yer değiştirmesi ile 

ayrılmış olması halinde denge konumuna doğru 𝑏/𝑘’ya eşit bir zaman sabiti ile  

𝑥 =  𝑥0𝑒
−𝑘𝑏 𝑡       (13) 

denklemine göre üstel olarak yaklaştığını gösterir. Kapı-kapama aracına zamana bağlı bir F(t) 
kuvveti eklendiği zaman durum Şekil- 6’daki 𝑉(𝑡) dış gerilimi zamanla değişen 𝑅𝐶 devresine 
benzeyecektir.  

          
 

ŞEKİL-6 
 

Eğer pistonun kütlesi göz yumulacak kadar küçük değilse çözümlemede bu durum göz önüne 
alınmalıdır. Kütle olması pistonun denge konumunu aşıp sönümlü bir salınım yapabilmesini sağlar. 
Gerçekten Deney ED-3’de göreceğimiz gibi, sönümlü harmonik salıngan, seri bağlı direnç, sığa ve 
indüktansdan oluşan elektrik devresinin tam bir benzeridir.  

Yukarıda, RC devresinin yük gevşemesi olarak da adlandırılan davranışı, RC zaman sabitinin 
yeterince uzun (diyelim ki birkaç saniye veya daha uzun) süreler olması halinde bir voltmetre ile 
doğrudan gözlenebilir. Bununla birlikte RC’yi bir saniyeden çok daha kısaltan değerlerde bu 
yöntem geçerli değildir. Ölçü aygıtının mekanik özellikleri yüzünden (eylemsizlik ve sönüm) aygıt, 
gerilim ve akımdaki son derece çabuk değişmelere uymaz, uysa bile bu hareket gözle izlenemez.  

OSİLOSKOP  

Çabuk değişen gerilimleri gözlemek ve ölçmek için daha iyi bir aygıt gereklidir. Osiloskop böyle bir 
aygıttır. Şimdi osiloskobun işleme ilkelerini tartışacağız. Temel düşünce, katod ışını tüpündeki 
elektron demetinin sapmasını bir gerilim göstericisi olarak kullanmaktır. Deney EA-1’den 
anımsayacağımız gibi, perdedeki noktanın sapması, saptırıcı levhalardaki gerilim ile oranlıdır. 
Bundan başka bir elektronun tüp içinde uçuş süresi 10-8 s

 
basamağında olduğu için elektron 

demetinin saptırıcı gerilimdeki bir değişmeye tepkisi de çabuk olur. Böyle olunca perdedeki 
noktanın son derece hızlı olan hareketi gözle izlenemez.  

Bu güçlük, saptırıcı levhaların her iki çiftinin kullanılması ile ortadan kaldırılır. Gözlenecek 𝑉 
gerilimi ya da doğrudan veya elektronik büyütme ile düşey saptırıcı levhalara uygulanır. Zamanla 



41 

düzgün olarak artan bir gerilim de yatay levhalara uygulanır. Buna göre demetin düşey sapması 
uygulanan gerilim ile yatay sapması da zamanla oranlıdır. Böylece nokta, 𝑉’nin grafiğini 𝑡’nin 
fonksiyonu olarak çizer. Bu iz çok kısa bir zamanda bile olsa görüntü tıpkı bir fluoresans lambanın 
güç kesildikten sonra saniyenin bölüntüsü kadar bir zamanda ışıldamasını sürdürmesi gibi, bir süre 
için perdede kalır. Perdedeki ize gözle bakılabilir veya daha ayrıntılı inceleme için resmi çekilebilir.  

Bu tekniği biraz daha detaylı inceliyebiliriz. Sığanın bir defalık dolmasını ve boşalmasını gözleme 
yerine üreteci belli bir frekans ile periyodlu olarak açıp kapayabiliriz. O zaman sığanın gerilimi, T 
bir dönem süresini göstermek üzere Şekil-7’deki gibi değişecektir. Benzer şekilde yatay levhalara 
uygulanan V gerilimi periyodlu olarak değiştirilebilir, böylece gerilim T zaman aralığında düzgün 
olarak artar, çabucak ilk değerine döner ve devri yenilenir. Bu gerilim zamanın fonksiyonu olarak 
Şekil-8’de gösterilmiştir. Bu iki değişimin aynı frekansta olduğunu düşünürsek o zaman bir devrin 
grafiği perde üzerinde tekrar tekrar çizilecektir.  

 

ŞEKİL-7  

   

ŞEKİL-8  

Yatay saptırıcı levhalara uygulanan gerilime bilinen nedenlerle testere dişli gerilim demek uygun 
olur. Görevi, demeti yatayda sabit bir hızla süpürtmek olduğundan katod-ışını tüpüne uygulanan 
gerilime süpürge gerilimi veya doğrusal zaman tabanı denir. Bu testere dişli gerilim osiloskop içine 
yerleştirilmiş bir elektronik devreden elde edilir; bu devre, süpürme frekansı düşey saptırıcı 
gerilimin frekansı ile zamandaş olacak şekilde düzenlenir.  
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ÖZET  

Katod - ışını osiloskobunu oluşturan temel işleyiş birimleri şu şekilde özetlenebilir:  

Katod-ışını tüpü: Bu, gösterici bir aygıt olup EA deneylerinde tartışıldığı gibi elektron tabancası, 
saptırıcı dizge ve elektron demetinin gözle görülebilmesini sağlayan bir floresan perdeden oluşur.  

Güç kaynağı: Güç kaynağı katodu ısıtmaya yarayan akımla birlikte elektron tabancasının kafes ve 
anodlarına uygun potansiyeller vermelidir. Tipik ikinci-anod hızlandırıcı gerilimi 2000 V’dur, fakat 
10000 V gerilimler de kullanılmaktadır. (Televizyon alıcılarında çoğu kez 15000 V’dan 20000 V’a 
kadar giden hızlandırıcı gerilimler kullanılır.)  

Testere dişi üreteci: Testere dişi üreteç, değişebilen bir frekansla Şekil- 8’deki gibi zamanla 
değişen bir gerilim vermelidir ve frekansı tekrarlayan giriş gerilimi ile zamandaş olacak şekilde 
ayarlanabilmelidir.  

İşaret yükselteçleri: Elektronu perdenin yarıçapı kadar düşeyine saptırmak için gerekli gerilim 
2000 V kadardır. 0,1 V’luk küçük işaretleri gösterebilmek için birkaç binlik ek bir büyütme 
gereklidir.  

Osiloskobun işlemesini gösteren bir blok çizge Şekil- 9’da ve tipik bir komuta tablası da Şekil- 
10’da gösterilmiştir. 

 
 

ŞEKİL-9

 

ŞEKİL-10 
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SİNÜSSEL GERİLİM  

Osiloskop, RC devrelerinin bir başka önemli davranışını incelemede yani sinüssel giriş gerilimi ile 
sürüldüğündeki tepkisini incelemede kullanılabilir. Şekil- 11’de gösterilen devreyi gözönüne alalım; 
uygulanan sürücü gerilim, en büyük değeri (genliği) V0 ve açısal frekansı ω olan zamanın sinüssel 
bir fonksiyonudur. 

 
 

 

ŞEKİL-11  

Deneydeki sinüssel olmasını beklediğimiz akımın genliği ve fazı frekans ile ilginç bir şekilde 
değişir. Gerilim değişimi çok yavaş ise, yani salınım periyodu 𝑅𝐶 zaman sabitine göre çok uzun ise 
sığanın yükü V’nin sabit olduğu durumdaki gibi yalnız 𝑄 =  𝐶𝑉 ile verilebilir. Fakat daha yüksek 
frekanslarda sığanın R direnci üzerinden dolup boşalması, gerilimdeki değişmelere “ayak 
uydurabilecek” kadar hızlı olmayabilir. Zaman ile 𝑉 arasında bir faz farkı bekleriz; yani aralarında 
frekansa bağlı ve bir periyod (dönem) bölüntüsü kadar fark vardır. Bundan başka en büyük 𝑄0 

yükü 
𝐶𝑉0 

dan oldukça az olabilir. Devreyi ayrıntılı olarak çözümleyerek yukarıdaki tartışmayı 
açıklayabiliriz.  

Devreye Kirchoff’un gerilim kuralını uygulayarak,  

𝑉0𝑐𝑜𝑠𝜔𝑡 =  𝐼𝑅 +  𝑄/𝐶  =   𝑑𝑄/𝑑𝑡 𝑅 + 𝑄/𝐶    (14) 

denklemini elde ederiz. Burada 𝐼 = 𝑑𝑄/𝑑𝑡 bağıntısını kullandık. Yukarıdaki tartışmaya dayanarak 
𝑄’nun sinüssel olarak gerilim ile aynı frekansla değiştiğini ve aralarında bir faz farkı bulunduğunu 
varsayalım. Yani 𝑄,  

𝑄 =  𝑄0𝑐𝑜𝑠(𝜔𝑡 +  φ)      (15) 

denklemi ile verilsin. Burada 𝑄0 
ve φ şimdilik bilinmeyen sabitlerdir. 𝑄0, 𝑄’nun bir dönemde 

eriştiği en büyük değerdir. Burada φ’ye faz açısı denir. Bir tam dönem ωt’nin 2π artmasına 
karşılıktır; eğer Q’nun zamanla değişimi V’nin bir çeyrek dönem önünde olduğu anlaşılırsa φ = π/2 
olur ve bu böyle gider.  

Şimdi, Kirchhoff’un ilmek kuralı uyarınca Eşitlik-15’in Eşitlik- 14’ü sağlaması için gerekli Q
0 

ve 
φ değerlerini bulalım. Eşitlik-15’den 𝑑𝑄/𝑑𝑡’yi hesaplayıp 𝑄 ve 𝑑𝑄/𝑑𝑡’yi Eşitlik-14’de yerlerine 
koyarak 

𝑉0 𝑐𝑜𝑠𝜔𝑡 = –  𝜔𝑅𝑄0 𝑠𝑖𝑛(𝜔𝑡 +  φ)  +  (𝑄0/𝐶) 𝑐𝑜𝑠(𝜔𝑡 +  φ)  (16) 
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bağıntısını elde ederiz. Bir sonraki adım, bir toplamın sinüs ve kosinüsü için olan trigonometri 
özdeşliklerini kullanarak 𝑠𝑖𝑛 (𝜔𝑡 +  φ) ile 𝑐𝑜𝑠 (𝜔𝑡 +  φ)’yi açmaktır.  

    𝑠𝑖𝑛(𝐴 +  𝐵)  =  𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐵 +  𝑐𝑜𝑠𝐴 𝑠𝑖𝑛𝐵  

𝑐𝑜𝑠(𝐴 +  𝐵)  =  𝑐𝑜𝑠𝐴 𝑐𝑜𝑠𝐵 –  𝑠𝑖𝑛𝐴 𝑠𝑖𝑛𝐵  

işlemlerden sonra Eşitlik- 16’yı 𝑠𝑖𝑛𝜔𝑡 ve 𝑐𝑜𝑠𝜔𝑡 parentezlerine alarak  

𝑐𝑜𝑠𝜔𝑡[ –  𝜔𝑄0𝑅 𝑠𝑖𝑛φ +  𝑄0
𝐶

 𝑐𝑜𝑠φ– 𝑉0 ]  +  𝑠𝑖𝑛𝜔𝑡[ –  𝜔𝑄0𝑅 𝑐𝑜𝑠φ– 𝑄0
𝐶

 𝑠𝑖𝑛φ]  =  0     (17) 

elde ederiz.  

Eğer Eşitlik-15, sığanın yükünün zamanla değişimini doğru betimliyorsa Eşitlik- 17’nin her an için 
doğru kalması gerekir. Özellikle, 𝜔𝑡’yi 0 ve 𝜋/2 yapan anları göz önüne almakta yarar vardır. 
Birinci durumda, ikinci terimin yok olduğunu ve denklemin yalnız ilk parantezin yok olması ile 
gerçekleşebileceğini görürüz. Benzer şekilde 𝜔𝑡 =  𝜋/2 için ikinci parantez yok olmalıdır. Bu 
ikinci parantezi sıfıra eşitlediğimizde  

𝑡𝑔φ = –  𝜔𝑅𝐶      (18)  
denklemini buluruz. Aynı şekilde ilk parantezi sıfıra eşitleyip yeniden düzenleyerek  
 

                                               𝑄0 =  𝑉0
– 𝜔𝑅 𝑠𝑖𝑛φ+ (1/𝐶) 𝑐𝑜𝑠φ

          
    

denklemini elde ederiz. Payı ve paydası 𝑐𝑜𝑠φ  ile çarpıp Eşitlik- 8’i kullandığımızda  
𝑐𝑜𝑠φ =  1

𝑠𝑒𝑐φ
 =  1

(𝑡𝑔2φ+1)1/2

   olduğundan 

 
𝑄0 =  𝐶𝑉0𝑐𝑜𝑠φ = 𝐶𝑉0

(𝑡𝑔2φ+1)1/2   = 𝐶𝑉0
[(𝜔𝑅𝐶)2+1]1/2     (19) 

 
denklemini elde ederiz. Burada φ açısının sığanın uçları arasındaki 𝑉𝐶 gerilimi (Dolaysıyla Q yükü) 
ile devreye uygulanan 𝑉 = 𝑉0𝑐𝑜𝑠𝜔𝑡 gerilimi arasındaki açı olduğuna dikkat ediniz. 
 
Yük, küçük ω’lar için sıfır, büyük ω’lar için π/2’ye yaklaşan bir faz açısı ile uygulanan gerilimden 
geri kalır (Çünkü φ her zaman eksidir.). Bundan başka 𝑄0, sabit 𝑉0 

gerilimi için alacağı 𝐶𝑉0 
değerini, ω’nin dolayısı ile φ’nin küçük değeri için alır. 𝑄0, zarttıkça 𝐶𝑉0 

dan başlayarak küçülür ve 
ω arttıkça daha küçülür. Bütün frekanslarda VR 

ile 𝑉𝐶, 90° faz dışı kalırlar.  
I akımının frekans ile nasıl değiştiğini gözlemek de ilginçtir. Eşitlik-15’in zamana göre türevini alıp  
cos (A +π/2) = – sin A özdeşliğini kullanarak 
 

𝐼 =  𝑑𝑄/𝑑𝑡 =  –  𝜔 𝑄0𝑠𝑖𝑛(𝜔𝑡 +  
φ)  =  𝜔 𝑄0 𝑐𝑜𝑠(𝜔𝑡 +  

φ + 𝜋/2
 
) 

 
denklemini elde ederiz. 𝐼0 

ile gösterilen 𝐼’nın en büyük değeri 𝜔𝑄0 
ile verilir. Eşitlik-18 ile Eşitlik-

19’u kullanarak bunu aşağıdaki gibi çeşitli yollardan gösterebiliriz:  
 
𝐼0  

= 𝜔 𝑄0= ω𝐶𝑉0 
cosφ  =  – 𝑉0

𝑅
sinφ = ω𝐶𝑉0 /[(ωR𝐶)2 +  1]1/2 = 𝑉0/[𝑅2 

+ (1/𝜔𝐶)2]
1/2

  (20) 
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Alçak-frekans sınırında 𝐼’ın 0’a ve I’nın fazının da  π/2’ ye yaklaştığını görürüz. Yüksek-frekans 
sınırında φ = – π/2 iken akım gerilim ile aynı fazdadır ve genişliği 𝑉0/𝑅 olur. Yani yüksek 
frekanslarda (𝜔 > 1/𝑅𝐶) devredeki sığa yokmuş gibi davranır. Tersine, alçak frekans sınırında 
devrenin davranışı 𝑅 olmaması hali gibidir. Sığa yüksek frekanslarda bir kısa devre, alçak 
frekanslarda ise açık devre olarak davranır.  
 

DENEY 

1. YÜK GEVŞEMESİ (RELAXATION)  

Yük gevşemesini, en yalın şekilde gözleyebilmek için Şekil-2’deki devre elemanlarına değerler 
vererek elde edilen Şekil-12’deki devreyi kurun.  

 
 

ŞEKİL-12 

Burada devredeki gibi bir S düğmesine gerek yoktur; DC güç kaynağının iç direnci çok küçük 
olunca sığayı tam olarak yüklemek için kutupları bir an değdirmek yeter.  

Voltmetreyi 20 V bölmesine getirip devreyi tamamlayın. Voltmetrenin yalnızca kendi iki ucu 
arasındaki gerilimi gösterdiğini unutmayınız. Deneyde kullanacağınız voltmetrenin iç direnci 
yaklaşık 10 MΩ’dur.  Burada voltmetrenin üreteç geriliminin yarısını (1/2) gösterdiğini göz önünde 
tutun. Niçin? Şimdi üreteç bağlantısını açınız ve sığanın boşalmasını gözleyin. Ölçü aletinde 
başlangıçta okunan değerin yarıya düşmesi için geçen zamanı ölçün. Eşitlik-11’den RC’i 
hesaplayınız ve beklenen değer ile karşılaştırın. R’nin içine ölçü aygıtının direncini de aldığımızdan 
emin olun.  

2. ÜSTEL SÖNME  

Ölçü aletini ardarda daha küçük ölçeklerde kullanarak azalma daha uzun süreler gözlenebilir. Bu 
yapılırken ölçü aletinin sıfır ayarı hafifçe kayabilir. Düşüşün üstel olduğunu göstermek için bir 
kronometre ile 3 veya 4 s aralıklarla gerilimi arka arkaya ölçünüz ve bu sırada akım zayıfladıkça 
ölçeği en küçük bölgeye ulaşıncaya kadar küçültünüz. Sıfır konumunun kaymasından doğan hatalar, 
her bölgedeki kaymanın büyüklüğünü gözleyerek ve uygun düzeltmeler yaparak yaklaşık olarak 
düzeltilebilir. Yarı logaritmik bir kağıt üzerinde V logaritmalı eksende olmak üzere V’nin t’ye bağlı 
grafiğini çiziniz. Bu grafiğin şeklini önceden kestirebilir misiniz? Yarı-logaritmik kağıt neden 
kullanışlıdır? Grafikten RC’yi bulunuz ve devre bileşenlerinden elde edilen değer ile karşılaştırınız.  
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3. ÇABUK GEVŞEME  

Girişte tartışıldığı gibi, gevşemeyi daha çabuk ölçmek için osiloskop kullanılabilir. Tekrarlanan bir 
gevşeme olayı elde etmek için, çıkışı Şekil-13’de gösterilen biçimde olan bir gerilim kaynağı 
(osilatör) kullanılmıştır.  

 

ŞEKİL-13 
 

Kare dalga denilen bu gerilim, osilatörden alınabilir. Osilatör üzerindeki komut düğmeleri kare-
dalga çıkışının genliğini ve f = 1/T frekansını değiştirmeye yarar.  

Osiloskobu ve osilatörü iyi kullanmaya alışmak için kare-dalga çıkışını osiloskobun düşey saptırıcı 
(vertical-input) girişine bağlayın. Şekil-14’de gösterilen desenlerin herbirini elde etmek için 
osiloskobu ayarlayın. Osilatörün frekansını ve genliğini değiştirmeye çalışın ve buna karşılık 
osiloskop komut düğmelerinde ne gibi değişikliklerin olması gerektiğini bulun.  

Osiloskobun ve osilatörün işlemesine alıştıktan sonra Şekil-15’de gösterilen devreyi kurun. Sığanın 
R üzerinden hem dolması hem de boşalması yüzünden bu devre Şekil- 3’deki devreden farklıdır. 
Osiloskop perdesinde ne gibi bir desen beklersiniz?  

Devrenin R = 10 kΩ, C = 0,1 µF ilk değerleri için sığanın bir dönemlik dolmasını ve boşalmasını 
gözleyin. Kare-dalganın bilinen frekansını kullanarak osilloskobun x-ekseni zaman birimlerine göre 
doğrudan ayarlanabilir. 
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ŞEKİL-14 

 

ŞEKİL-15 

Yarı-ömrü (gevşeme süresini) ölçünüz ve bundan Eşitlik-11’i kullanarak RC zaman sabitini yeniden 
hesaplayın. 

Kare-dalga üretecinin bir iç direnci olduğunu göz önünde tutun. Eğer R, bu iç dirençten çok daha 
büyük değilse toplam devre direncini bulmak için ikisini toplamak gerekir. R ve C’nin farklı 
değerlerini de deneyebilirsiniz. Özellikle RC, kare-dalganın T periyodundan çok daha büyük olduğu 
zaman ne olur? Çok daha küçük olduğu zaman ne olur?  

4. SİNÜSSEL GERİLİM  

Aynı deneysel düzenek osilatörün sinüs dalga çıkışını kullanarak RC devresinin bir sinüssel giriş 
gerilimine karşı tepkisini gözlemede kullanılabilir. Böylece Eşitlik- 18 ile 19’un öngördükleri 
sınanabilir. Osiloskobun sığa üzerindeki Q yükünü değil de Q/C’ye eşit olan gerilimi ölçtüğüne 
dikkat edin. Eşitlik-19’a göre sığadaki VC 

tepe gerilimi boyunca VC/V0 
oranı, osiloskobun düşey 

girişini sıra ile sığaya ve sinüs-dalga üretecine bağlayarak kolayca ölçülebilir. Bu oranı kabaca 1/2 
yapacak bir frekans seçip bunu olabildiğince kesinlikle (osiloskopta) ölçünüz ve faz kayma açısını 
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hesaplayın. Bundan ve sinüs-dalganın bilinen frekansından, RC’nin değerini hesaplayın ve bunu 
devre bileşenlerinden elde edilen değer ile karşılaştırın. Dalga-üreteci ölçeğinin f frekansını 
verdiğini unutmayın (ω = 2πf).  

5. FAZ KAYMASI  

Ürüteç gerilimi ile sığa gerilimi arasındaki faz kayması çeşitli yöntemler ile ölçülebilir. Aşağıda iki 
yol üzerinde durulacaktır.  

i) SÜPÜRME ZAMANDAŞLIĞI  

Bu deneyde iki kanallı (CH-1 ve CH-2) bir osiloskop kullanacaksınız. Güç kaynağının çıkışındaki 
𝑉 = 𝑉0𝑐𝑜𝑠 𝜔𝑡 gerilimini CH-1 girişine, sığanın uçları arasındaki 𝑉𝐶 = 𝑉0𝑐𝑜𝑠 (𝜔𝑡 + φ ) gerilimini 
ise CH-2 girişine bağlayınız. Her iki kanal da eş zamanlı süpürüleceği için φ  faz farkı nedeniyle V 
ve 𝑉𝐶 geriliminin osiloskoptaki görünüşü Şekil- 16’daki gibi olacaktır. Osiloskop ekranından iki 
gerilimin arasındaki zaman farkını (∆t) ölçünüz.  φ  faz farkı ile ∆t zaman farkı arasındaki ilişkinin 
 φ = 2𝜋

𝑇
∆𝑡 olacağı açıktır. Sürücü frekans artırıldıkça sığa geriliminin genliği azalır ve desen sağa 

doğru kayar. Bu, yükün en büyük değerini, sürücü gerilim en büyük değerini aldıktan sonra aldığını 
gösterir. Bu, genellikle faz gecikmesi olarak bilinen eksi faz açısına karşılık gelir. Çeşitli 
frekanslarda φ faz açısını ölçün ve Eşitlik- 18’in (𝑡𝑔 φ = –  𝜔𝑅𝐶) öngördükleri ile karşılaştırın. 

 

  R=10 kΩ, C=0,1 µF: (a) f=100 Hz (b) f=400 Hz (c) f=800 Hz alınarak çizilmiştir. 

ŞEKİL-16 
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LİSSAJOUS EĞRİLERİ 

Sürücü gerilim ile sığa gerilimi arasındaki φ faz açısını bulmanın başka yolu Şekil- 17’de görüldüğü 
gibi, testere dişi süpürme üreticini hiç kullanmadan, birini yatay sapmada ötekini düşey sapmada 
kullanarak bu gerilimleri osiloskobun perdesinde doğrudan karşılaştırmaktır. Osiloskop üzerindeki 
X-Y düğmesine basılarak yatay saptırıcı levhaları süpürücü üreteç yerine yatay giriş (CH-2) 
uçlarına bağlanır.  

 

ŞEKİL-17  

Bu koşullar altında perdedeki noktanın hareketi, doğrultuları birbirine dik iki basit harmonik 
hareketin bir  φ faz farkı ile üstüste binmesinden oluşur. Bu yoldan elde edilen bir desene Lissajous 
eğrisi denir. Düşey ve yatay en büyük sapma genliklerinin eşit olacak şekilde ayarlandığını 
düşünün. O zaman, iki gerilimin alçak frekanslarda olduğu gibi aynı fazda olması halinde noktanın 
çizdiği eğrinin Şekil-19a’daki gibi 45° eğimli bir doğru olması gerekir. Faz açısının 90° olduğu 
yüksek frekanslarda noktanın izlediği Şekil-19c’deki gibi bir daire olmalıdır. Orta frekanslarda şekil 
bir elipstir.  

 

ŞEKİL-19  

Elips biçimli izden yararlanarak faz kaymasını bulmanın en kolay yolu düşey ve yatay genlikleri en 
büyük sapmalar için eşit olacak şekilde ayarlamak ve sonra da Şekil-20’de gösterilen ölçmeleri 
yapmaktır.  
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ŞEKİL-20 

Bu yöntemin faz kaymalarını doğru verdiğini göstermek için x ve y koordinatlarının 

𝑥 = 𝑥1𝑐𝑜𝑠𝜔𝑡  ve 𝑦 = 𝑦1cos (𝜔𝑡 + φ) 
 

ile verildiğini göz önünde tutalım. x = 0 olduğu zaman örneğin ωt = ± π/2 için  

𝑦 = 𝑦1 cos �±
𝜋
2

+ φ� = ±𝑦1𝑠𝑖𝑛φ 

olur. Bu durumda B uzaklığı y yer değiştirmesinin tam iki katıdır. Böylece şekilden görüldüğü gibi 
B = 2y

1 
sin φ’dir. Aynı zamanda A = 2y

1 
olduğundan sinφ elde edilebilir.  

Bu yöntemi kullanarak faz açısını frekansın fonksiyonu olarak ölçünüz tg φ’yi ω’nın fonksiyonu 
olarak gösteren bir grafik çizin. Bu grafiğin eğiminden RC’yi bulunuz ve devre bileşenlerinden 
doğrudan hesaplanan değer ile karşılaştırın.  

SORULAR 
 
1  R’nin birim akım başına potansiyel farkı birimi ile ve C’nin birim potansiyel farkı 

başına yük birimi ile ölçüldüğünü göz önüne alarak RC’nin zaman boyutunda olduğunu 
gösterin.  

2  Giriş geriliminin bir zaman integrali olan çıkış gerilimini oluşturmak için bir direnç-
sığa karması nasıl bağlanmalıdır?  

3  Kare-dalga üretecinin iç direnci nasıl ölçülebilir?  
4  RC devresi, ω frekansı 1/RC’ye eşit olan bir sinüssel gerilim ile sürüldüğü zaman faz 

kayması ne olur? Sığa geriliminin sürücü gerilime oranı nedir?  
5  Eşitlik-8 ile Eşitlik-19’dan en büyük Q0 yükünü φ’ye bağlı olmadan yalnız ω’nın 

fonksiyonu olarak veren bir bağıntı çıkarın.  
6  Şekil-19a’daki doğru niçin sağa değil de sola eğilmiştir?  

7  Şekil-20’de nokta, elipsi saat iğneleri yönünde mi yoksa zıt yönde mi çizer?  
8  Lissajous eğrileri düzeneğinde, demet şiddeti de üretecin kare-dalga çıkışı ile modüle 

edilmiş olsaydı ne olacaktı?  
9  Osiloskobun düşey ve yatay girişlerinin her ikisinin de aynı genlikle sinüssel olduğu ve 

düşey girişin frekansının yatay girişinkinin tam olarak iki katı olduğu varsayılsın. Bu 
durumda meydana gelecek Lissajous eğrisini çizin.  
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Deney ED - 2  
Direnç – İndüktans (RL) Devreleri  
GİRİŞ  

Deney ED-1’de seri bağlı direnç ve sığadan oluşan devrelerin davranışını inceledik. Bir direnç 
üzerinden boşalan sığadaki yükün üstel olarak azaldığını gördük ve bu devrenin uygulanan sinüssel 
bir sürücü gerilime karşı tepkisini inceledik. Bu deneyde, bir direnç ve bir indüktansdan oluşan bir 
devreyi aynı şekilde inceleyeceğiz. Arada bazı önemli farklar da olsa RC devresi ile bu devre 
arasında birçok benzerlikler bulunduğunu göreceğiz.  

 

ŞEKİL-21  

İlk olarak Şekil-21’deki devreyi göz önüne alalım. Üreteç, gerilimi V0’ 
dır ve indüktansın direnci 

ihmal edilebilirse devreden  

      𝐼0  =  𝑉0/𝑅        (21) 

ile verilen düzgün bir I0 akımı geçer. Belli bir anda diyelim t = 0’da üretici devreden çıkarmak üzere 
anahtarı çevirdiğimizde ne olur?  

Bir defa, akım birden sıfıra düşemez. 𝐿’nin uçları arasındaki gerilim 𝑑𝐼/𝑑𝑡 ile oranlıdır. Eğer akım 
kesikli olarak değişse idi bu gerilim sonsuz büyük olacaktı. O halde akım yavaş bir gidişle 
sönmelidir; bunun zamanla değişimini 𝐼(𝑡) ile gösterelim, bu demektir ki 𝐼, 𝑡’nin bir fonksiyonudur. 
Bu fonksiyonun ne olduğunu bulmak için RC devresinde olduğu gibi 𝑅𝐿 ilmeğine Kirchoff’un 
gerilim kuralını uygularız.  

R üzerinde gerilim düşmesi 𝐼𝑅 ve 𝐿’deki ise 𝐿𝑑𝐼/𝑑𝑡’dir, böylece ilmek denklemi şu şekilde yazılır: 

𝑅𝐼 +  𝐿 𝑑𝐼/𝑑𝑡 =  0        (22) 

Bu denklemin çözümü zamana göre türevi, –𝑅/𝐿 ile fonksiyonun kendisinin çarpımı olan ve t = 0 
anında 𝐼0  değerini alan bir fonksiyon olmalıdır. Bu koşulları  

                                          𝐼(𝑡)  = 𝐼0𝑒
−𝑅𝐿𝑡

        (23)  
fonksiyonu sağlar. Gerçekten, yalnızca bu fonksiyonun bu koşulları sağladığı gösterilebilir.  
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Deney ED-1’in ana çizgileri izlenirse bu yeni durumdaki belirtgin zamanın (yani zaman sabitinin) 
𝐿/𝑅 ile verildiği ortaya çıkar; 𝐿/𝑅’ye eşit bir zaman sonunda akım, başlangıç değerinin 1/e’sine 
düşer. Benzerince Deney ED-1’de tanımlanan T

1/2 
yarı-ömrü  

𝑇1
2

=  (𝑙𝑛2)𝐿/𝑅 =  0,693 𝐿/𝑅      (24) 

ile verilir.  

𝑅𝐶 devresinde olduğu gibi bunun elektro-mekaniksel benzerlerini inceleyebiliriz. Hız kutusu 
(hidrolikli kapı tutucusu) durumunu göz önüne alalım, fakat şimdi yayın çıkarıldığını ve m piston 
kütlesinin ihmal edilemediğini düşünelim. Bu durumda piston üzerindeki tek kuvvet, kütle ile 
ivmenin çarpımına yani m dv/dt’ye eşitlenen – 𝑏𝑣 viskozluk kuvvetidir. Buna göre hareket denklemi 
(Newton’un ikinci yasası)  

𝑚𝑑𝑣
𝑑𝑡

+ 𝑏𝑣 =  0        (25) 

olur. Bu denklem ile Eşitlik-22 karşılaştırıldığında bunların tam özdeş biçimde olduklarını görülür. 
𝑣, 𝐼’nın; 𝑏, R’nin ve 𝑚 de 𝐿’nin yerini alır.  𝑣 – I ve b – R benzerlikleri 𝑅𝐶 devresinde olduğu 
gibidir ve bu durumda 𝑚’nin 𝐿 indüksiyon katsayısına karşılık geldiğini bulmuş oluruz.  

Bu benzetmeyi izleyerek, pistona bir 𝑣0 başlangıç hızı verilir ve serbest bırakılırsa hızın m/b’ye eşit 
belirtgin bir sönme zamanı ve T1/2= (ln2) m/b’lik bir yarı-ömür ile  

𝑣(𝑡)  =  𝑣0𝑒
−𝑏
𝑚𝑡       (26) 

denklemine göre zamanla değiştiğini görürüz.  

Şimdi 𝑅𝐿 devresine yeniden dönelim ve Şekil-22’de gösterilen devrenin uygulanan sinüssel 
gerilime karşı tepkisini, 𝑅𝐶 devresinde kullanılan ana yol uyarınca izleyelim. Bu devrenin ayrıntılı  

 

ŞEKİL-22 
 

olarak çözümlenmesinden önce devreye nitel bir gözatmak yerinde olur. ω frekansı çok küçük ise 
akım çok yavaş değişir. Çünkü L’nin uçları arasındaki LdI/dt ile verilen potansiyel düşmesi çok 
küçüktür; bu nedenle devre sanki indüktans kısmı kısa devre edilmiş gibi davranır. Bu durumda 
genliği I

0 
= V

0
/R olan akım gerilim ile aynı fazda olmalıdır. Tersine çok yüksek frekanslarda L’nin 
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uçları arasındaki gerilim R’nin uçları arasındakinden çok büyük olabilir ve bu yüzden R bir yana 
bırakılabilir. Bu durumda, akımın en büyük değeri V

0
/R’den çok daha küçüktür ve gerilim ile akım 

arasında bir faz farkı vardır.  

Şekil-22’deki devrenin denklemi, Eşitlik-22’ye sürücü gerilim için bir terim ekleyerek bulunabilir. 
Eğer sürücü gerilim V(t) = V

0 
cos ωt ile verilirse devre denklemi  

𝑅𝐼 +  𝐿 𝑑𝐼/𝑑𝑡
 

=  𝑉0𝑐𝑜𝑠𝜔𝑡       (27) 
 
olur. Sürücü gerilim ile aynı ω frekanslı fakat aralarında bir faz farkı olabilen bir çözüm ararız. Şu 
halde;  

𝐼(𝑡)  =  𝐼0 𝑐𝑜𝑠(𝜔𝑡 + φ)      (28) 

şeklinde bir çözüm deneyelim. I
0 

ile φ’yi bulmak için yapılacak işlem bunun karşılığı olan Deney 
ED1’deki hesabın tam benzeridir ve ayrıntıları öğrencilere bırakılmıştır. Eşitlik-27 ve 28’de 
yerlerine konularak doğrulukları gösterilebilecek olan sonuçlar:  

𝑡𝑔φ = − 𝜔𝐿/ 𝑅 

 

𝐼0  =  𝑉0𝑐𝑜𝑠 φ
𝑅

 =  𝑉0
[𝑅2

 
+ (𝜔𝐿)2]

 1/2                         (29a) 

dır. Böylece önceden nitel olarak kestirdiğimiz doğru çıktı. Çok alçak frekanslarda (ωL << R) sanki 
indüktans kısa devre edilmiş gibidir, φ hemen hemen sıfırdır, I

0 
ise V0/R’ye eşittir. Çok yüksek 

frekanslarda (ωL >> R), sanki direnç kısa devre olmuş gibi φ, – π/2’e ve I
0
’da V0/ωL’ye ulaşır. Orta 

frekansta her zaman akımın fazı gerilimden 0 ile –π/2 arasında bir açı kadar geridedir.                    
[𝑅2 +  (𝜔𝐿)2] 1/2 niceliğine genellikle devrenin empedansı denir ve Z ile gösterilir. Böylece 
herhangi bir frekansta I

0 
= V

0
/Z’dir.  

Çıkardığımız yararlı başka bir sonuç da şudur: Herhangi bir frekansta R ve L’den şimdi olduğu gibi 
aynı akım geçiyorsa L’nin uçları arasındaki gerilim R’deki gerilimden bir çeyrek dönem π/2 
öndedir. L, çok alçak frekanslarda kısa devre, çok yüksek frekanslarda ise açık devre olur.  

DENEY 

1. ÜSTEL ARTIŞ   

Bir RL Devresinde akımın üstel azalmasının normal bir voltmetre ile gözlenmesi, RC devresinde 
yük gevşemesinin gözlenmesi gibi pratik değildir. Çünkü yeterince büyük bir zaman sabitinin elde 
edilebilmesi için L’nin aşırı derecede büyük olması gerekir. Bununla birlikte Şekil- 15’dekine 
benzer bir düzenek kullanabiliriz. Böyle bir düzenek Şekil-23’de gösterilmiştir. Bu durumun, RL 
devresinde akımın üstel azalmasına veya akımın sıfırdan üstel artarak V

0 
kare-dalga genliğine 

ulaşmasına karşılık geldiğine dikkat ediniz. Her iki durumda da zaman sabiti aynıdır (Neden?).  

Akımın her iki yönde bir periyodluk üstel artmasını R = 1 k Ω ve L = 22 mH başlangıç değerleri 
için gözleyin. Kare-dalganın bilinen frekansının kullanılması ile osiloskobun x ekseni doğrudan 
zaman birimlerine göre ayarlanabilir. Yarı-ömrü ölçünüz ve bundan L/R zaman sabitini hesaplayın. 
Bu değeri, doğrudan L ve R’den hesaplanan değer ile karşılatırabilmek için R’nin yalnızca devre 
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direnci olmayıp Deney ED-1’de tartışıldığı gibi, kare-dalga üretecinin iç direncini de kapsadığına 
dikkat etmek gerekir.  

    

ŞEKİL-23 
 

R ve L’nin çeşitli değerlerini deneyebilirsiniz. Özellikle L/R kare-dalganın T periyodundan çok 
daha büyük olursa ne olur? Bu ne zaman çok daha küçüktür?  

2. SİNÜSSEL TEPKİ  

Osilatörün sinüs-dalga çıkışını kullanarak RL devresinin sinüssel bir sürücü gerilime karşı tepkisini 
gözlemede aynı deney düzeneği kullanılabilir. Böylece Eşitlik-29a’nın öngörüleri sınanabilir. 
Osiloskop R’nin uçları arasındaki gerilimi ölçer. I

0 
= V

R
/R Ohm yasasından akım kolayca elde 

edilir. Başka bir yol olarak, bu bağıntı Denk (29a) ile birleştirip I0’ 
ı aradan çıkararak,  

𝑉𝑅
𝑉0

= 𝑅

�𝑅2 
+ (𝜔𝐿)2�

 1/2                (29b) 

bulunur. R direncinin ve sinüssel-dalga üretecinin uçlarını sıra ile osiloskobun düşey girişine 
bağlayarak 𝑉𝑅

𝑉0  
gerilim oranı kolayca ölçülebilir. Bu oranı kabaca yarıya düşürecek bir frekans seçin, 

oranı olabildiğince kesinlikle ölçün ve φ faz kayma açısını hesaplayın. Bundan ve sinüs dalganın 
bilinen frekansından L/R değerini hesaplayın. Üreteç frekans ölçeğinin f frekansını verdiğini ve      
ω = 2πf olduğunu unutmayın.  

3. FAZ KAYMASI  

Üreteç gerilimi ile devre akımı (veya direnç gerilimi) arasındaki faz kayması, Deney ED-4 ile 
ED1’de tartışılan yöntemlerden biri ile ölçülebilir. 𝑉𝑅

𝑉0
= 1

2
’deki frekansın üstündeki ve altındaki 

çeşitli frekanslarda faz açısını ölçün. tgφ’yi ω’nın fonksiyonu olarak gösteren bir grafik çizin. Bu 
çizimin eğiminden L/R’yi bulunuz ve devre bileşenlerinden hesaplanan değer ile karşılaştırın.  
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SORULAR  

1 L/R niceliğinin zaman boyutunda olduğunu gösterin.  

2 Çıkış geriliminin girişin zamana göre türevi olması için bir RL düzenlenimi (kombinasyonu) 
nasıl bağlanmalıdır?  

3 RL devresi frekansı ω = R/L olan bir sinüssel gerilim ile sürüldüğü zaman faz kayması ne olur? 
İndüksiyoncu gerilimin sürücü gerilime oranı nedir?  

4 Bir sinüssel fonksiyonun [cos(ωt + φ) gibi] zamana göre türevi alınınca fazının daima π/2 kadar 
artacağını gösterin.  

5 Bir indüktansın iç seri direnci önemsenemezse bu durum indüktanstaki gerilim ile akım 
arasındaki bağıl fazı nasıl değiştirecektir?  

6 Eşitlik-27’deki sürücü gerilim V
0
cosωt yerine V

0
sinωt ile verilmiş olsaydı yapılan 

çözümlemede ne gibi bir değişme olacaktı? Eşitlik-29’da verilen sonuçlar aynı mı yoksa farklı 
mı olacaktı? Açıklayın.  

7 Şekil-21’deki devrede üretecin devreden çıkarıldığını ve sonra t = 0 anında devreye 
sokulduğunu varsayınız, akımı zamanın fonksiyonu olarak veren bir bağıntı bulunuz. İp ucu: 
Akımın son I0 

değeri ile bir andaki I(t) değeri arasındaki fark L/R zaman sabiti ile üstel olarak 
düşer.  
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Deney ED - 3  
LRC Devreleri ve Salınımlar  
GİRİŞ  

Deney ED-1’de bir sığanın bir direnç üzerinden boşalmasını ve direnç-sığa takımının sinüssel bir 
sürücü gerilime karşı tepkisini inceledik. Bu sistemin davranışının yay ve amortisörden oluşan kapı 
kapayıcısının davranışına benzediğini gördük.  

Bu deneyde, harmonik salınganın elektrikteki benzeri olan elektrik devresini inceleyeceğiz. Temel 
düşünceleri tanıtmak için önce, Deney ED-1’in Şekil-2’deki devresine çok benzeyen Şekil- 24’deki 
devreyi ele alalım.  

 

ŞEKİL-24 

Bu devrenin öncekinden farkı direnç yerine bir indüktans konulmuş olması ve bataryanın değişik 
biçimde bağlanmasıdır. Anahtar 1’i birden kapatarak sığaya bir Q0 

ilk yükü verildiğini ve sonra t = 0 
anında anahtar 2’nin kapatıldığını varsayalım. Böylece sığa indiksiyoncu üzerinden boşalmaya 
başlar. Bununla beraber RC devresinden farklı olarak indüktans uçları arasındaki gerilim LdI/dt ile 
verildiğinden akım birden değişemez. Bunun yerine akımın değişim hızı sığada bir andaki gerilimin 
indüktansın uçları arasındaki gerilim ile aynı olmasını gerektiren koşul ile belirlenir. Akımın 
yönünü Şekil-24’teki gibi tanımlarsak  

𝐼 =  −𝑑𝑄/𝑑𝑡  𝑣𝑒  𝑄/𝐶 =  𝐿𝑑𝐼/𝑑𝑡     (30) 
 
bağıntısını elde ederiz. Bunları birleştirerek  

 
𝐿 𝑑2𝑄/𝑑𝑡2= -𝑄/𝐶       (31) 

buluruz.  

Bu denklemin şekli, kütlesi m ve kuvvet sabiti k olan bir harmonik salınganın Newton hareket 
denkleminin tam aynıdır.  

𝑚 𝑑2𝑥/𝑑𝑡2 = −𝑘𝑥       (32)
  

𝑆ığanın tersinin (1/C) Deney ED-1’deki yayın 𝑘 kuvvet sabitinin ve 𝐿 indüktansının da mekanik 
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sistemdeki m kütlesinin yerini aldığını görürüz. Başlangıçtaki yer değiştirmesi x
0 

olan bir harmonik 
salınganın hareket denkleminin  

𝑥 = 𝑥0𝑐𝑜𝑠𝜔0𝑡 
 

ile verildiğini biliyoruz. Buradaki ω
0 

açısal frekansıdır (𝜔0=2πf) ve  

𝜔0 = (𝑘
𝑚

)1/2
 
       (33) 

ile verilir.  
 
Benzetişe devam edersek, sığadaki yükün de zaman ile  
 

𝑄 = 𝑄0 𝑐𝑜𝑠𝜔0𝑡 
 
denklemine göre salındığını görürüz. Buradaki açısal frekans 

 
𝜔0 = 1/(𝐿𝐶)1/2      (34)  

ile verilir.  

Harmonik salıngandaki enerji, hareket sırasında potansiyelden kinetik enerjiye ve kinetikten 
yeniden potansiyel enerjiye dönüşür. Yer değiştirmenin en çok, hızın sıfır olduğu noktalarda enerji 
tüm potansiyeldir; yer değiştirmenin sıfır hızın en büyük olduğu noktalarda ise enerjinin tümü 
kinetiktir. Benzerince LC devresinde sığa yükünün en çok akımın sıfır olduğu anlarda enerji tüm 
sığada, yükün sıfır akımın en fazla olduğu anlarda ise indüktansın manyetik alanında toplanır. 
Böylece sığanın elektrik alan enerjisi potansiyel enerjiye, indüktansın manyetik alan enerjisi de 
kinetik enerjiye benzer. Bu benzerlikler Şekil-25 ve 26’da daha ayrıntılı biçimde gösterilmiştir.  

 

 
 

ŞEKİL-25 
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ŞEKİL-26 

Burada, sönümlü bir harmonik salınganın elektrikteki benzerinin, bir direnç, bir indüktans ve bir 
sığadan oluşan bir elektrik devresi olduğunu görmek zor olmayacaktır. Harmonik salıngan için 
geçerli Eşitlik-32’nin, hız ile oranlı, zıt yönde olduğu düşünülen bir sönüm kuvvetini veren              
–bdx/dt teriminin eklenmesi ile değiştirilmesi gerekir. Böylece sönümlü harmonik salınganın 
hareketinin diferensiyel denklemi  

𝑚𝑑2𝑥
𝑑𝑡2

+ 𝑏 𝑑𝑥
𝑑𝑡

+ 𝑘𝑥 = 0     (35) 

olur. Şekil-27’de gösterilen devre için Kirchhoff’un ilmek kuralı  
 

−𝐿
𝑑𝐼
𝑑𝑡
− 𝐼𝑅 +

𝑄
𝐶

= 0 
denklemini verir. 



59 

 

ŞEKİL-27 

Bu ifade , I = – dQ/dt’i kullanarak, Q cinsinden yeniden yazılabilir:  

𝐿 𝑑2𝑄
𝑑𝑡2

+ 𝑅 𝑑𝑄
𝑑𝑡

+ 𝑄
𝐶

= 0      (36) 

Bu denklem önceden ileri sürüldüğü gibi Eşitlik-35’in biçimce tam aynıdır. Önceki gibi, L, m’ye; 
1/C, k’ya ve R direnci sönüm sabiti b’ye eş düşer.  

Sönümlü harmonik salıngan ile LRC devresi arasındaki benzerliğin başka bir yönü iki sistemdeki 
enerji bağıntılarının göz önüne alınması ile ortaya çıkar. Daha önce gözlendiği gibi sönümsüz bir 
harmonik salınganın topam mekanik enerjisi sabittir. Sönüm kuvvetinin etkisi enerjiyi sürekli olarak 
azaltmaktır. Çünkü her an hız ile zıt yönlüdür ve dolayısı ile her zaman dizgede eksi iş yapar.  

Benzer şekilde dirençsiz bir LC devresinin toplam enerjisi sabittir; indüktans ile sığa enerji 
biriktirir, fakat elektrik enerjisini devreden çıkarıp eksiltmez. Direncin eklenmesi I

2
R güç kaybı ile 

dizgenin enerji kaybetmesine yol açar. Enerjinin dirençte ısıya dönüşmesi ile devredeki elektrik 
enerjisi sürekli olarak azalır.  

Hiç kuşkusuz tam sönümsüz bir harmonik salınganın bulunması gerçekleştirilmesi olanak dışı ideal 
bir durumdur. Örneğin, doğrusal hava rayında yapılan deneyler, kızağı taşıyan hava tabakasının 
viskozluğunun aşağı yukarı hız ile oranlı küçük, fakat ihmal edilmeyen bir sönüm kuvveti 
oluşturduğunu gösterir. Aynı şekilde dirençsiz bir LC devresi de bir idealdir. Devrede hiç direnç 
olmasa bile indüktans sargı telinin ve bağlama tellerinin direnci hiç bir zaman tamamen ihmal 
edilemez.  

Harmonik salınganlar (hava rayı veya bir basit sarkaç) üzerindeki çalışmalar sönüm kuvvetinden 
ileri gelen enerji kaybı ile birlikte salınımların genliğinde de düzgün bir azalma olduğunu gösterir. 
Benzer şekilde Şekil-27’deki gibi bir LRC devresinde, sığa üzerindeki Q yükünün salınım 
genliğinin küçülmesini bekleriz (Şekil-28). “Sönümlü salınım” terimi ile anlatılmak istenen bundan 
başka bir şey değildir.  

Salınımların ne çabuklukla söndüğü hiç kuşkusuz b sönüm sabitinin veya R direncinin büyüklüğüne 
bağlıdır. Bu niceliklerin daha büyük bir değer alması salınımların daha çabuk düşmesine yol açar. 
Bu bağıntı ayrıntılı şekilde incelenebilir. Sorunu burada iki farklı yönden ele alacağız; birisi enerji 
kavramlarını kullanarak yaklaşık bir çözümlemeye gitmek, öteki ise Eşitlik-35 ile 36’nın genel 
çözümlerini kullanmaktır.  
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ŞEKİL-28 

Önce enerji yaklaşımını ele alarak şu soruyu soralım: Belli bir dönem için en büyük yer değiştirme 
(genlik) x

0 
ise, bu dönem süresince dizge ne kadar enerji kaybeder? Anlık enerji kaybetme hızı 

sönüm kuvvetine karşı iş yapma hızıdır. Bu, bv kuvveti ile v hızının çarpımı olan bv2 
dir. Bu nicelik 

dönem boyunca değişir, fakat bir dönem içindeki toplam enerji kaybı, yaklaşık olarak, ortalama 
enerji kaybetme hızı (bv2 

nin ortalama değeri) ile bir dönem için geçen 

𝑇 = 1
𝑓

= 2𝜋
𝜔

= 2𝜋(𝑚
𝑘

)1/2     (37) 

zamanının çarpımı şeklinde verilir.  

Bu v2 hız karesinin ortalama değerini bulmak için, bir harmonik salınganın < ½ mv
2
>ort, ortalama 

kinetik enerjisinin < ½kx2>ort, ortalama potansiyel enerjisine eşit olduğunu göz önüne alalım; o 
halde bu niceliklerin her biri E toplam enerjisinin yarısına eşit olmalıdır. Buna göre                          
½ 

 
m<v2>

ort
 = ½ E ’dir. O zaman ortalama enerji kaybı 

〈𝑑𝐸
𝑑𝑡
〉𝑜𝑟𝑡 = −〈𝑏𝑣2〉𝑜𝑟𝑡 = −�𝑏

𝑚
�𝐸              (38) 

 
olur ve bir döneklik sürede enerji kaybı:  
 

∆𝐸 = − ��𝑏
𝑚
�𝐸� �2𝜋

𝜔
� = − 2𝜋𝑏𝐸

(𝑚𝑘)1/2               (39) 
olur. 
 
Öte yandan, 𝑑𝐸

𝑑𝑡
 bir dönem boyunca sabit değildir, bu nicelik v en büyük iken en büyük, sıfır iken 

sıfırdır. Eğer bu değişimi önemsemez ve enerjinin ortalama olarak nasıl azaldığını göz önüne 
alırsak, Eşitlik-38’in E’nin bir diferensiyel denklemi olduğnu ve çözümünün de enerjiyi zamanın 
fonksiyonu olarak verdiğini görürüz. Bu denklemi ve çözümünü RC devresini incelerken gördük ve 
çözüm,  
 

𝐸 = 𝐸0𝑒−(𝑏/𝑚)𝑡      (40) 

dir. Yani salınganın enerjisi, (m/b) ile verilen belirtgen bir gevşeme zamanı ile üstel olarak azalır.  
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Dizgede biriktirilen maksimum enerjinin bir dönemde harcanan enerjiye oranının 2π katı olarak 
tanımlanan nitelik katsayısının (QK) ortaya atılmasında yarar vardır. QK’yı veren bağıntı Eşitlik-
39’dan kolayca bulunabilir.  

𝑄𝐾 = 2𝜋𝐸
∆𝐸

= 𝑚𝜔
𝑏

= (𝑚𝑘)1/2

𝑏
     (41) 

 
Dizge enerjisinin zamanla nasıl düştüğünü bulduktan sonra şimdi çoğu kez doğrudan 
gözleyebildiğimiz genliğin zamanla nasıl azalabileceğini bulabiliriz. Herhangi bir anda E, genliğin 
karesi ile oranlı olduğundan x0’ın zamanla değişimi, E’nin zamana göre değişimini anlatan 
fonksiyonun kare-kökü olan  

�𝑒−�
𝑏
𝑚�𝑡�

1/2
= 𝑒−�

𝑏
2𝑚�𝑡            (42) 

 

şeklinde bir fonksiyon ile verilmelidir.  

Özellikle genlik  

𝑥 = 𝑥0𝑒
−� 𝑏

2𝑚�𝑡       (43) 
 
ile verilmelidir, burada x

0
, t = 0 anındaki başlangıç genliğidir.  

 
Böylece, salınım genliği için gevşeme zamanının (genliğin ilk değerinin 1/e’sine düşmesi için geçen 
zaman),  
 

𝜏 =  2𝑚/𝑏                (44a)  

olduğunu görürüz.  

Dizgenin T1/2 yarı-ömrünü tıpkı Deney ED-1’de olduğu gibi tanımlayabiliriz. Bu sürede genlik ilk 
değerinin yarısına düşer ve yarı-ömür  

𝑇1/2 =  𝜏 𝑙𝑛2 =  (𝑙𝑛2)2𝑚/𝑏 =  1,386𝑚/𝑏            (44b) 
 
ile verilir. Bu eşitliğin LR devresindeki karşılığı 
 

𝑇1/2 =  1,386𝐿/𝑅                 (44c) 

olacağı açıktır. Sönümlü harmonik salıngan ve LRC devresi arasındaki benzerliklerden ve özellikle 
Eşitlik-35 ve 36 diferensiyel denklemlerinin şekilce özdeş olmalarından yararlanmak ve uygun 
simge değiştirmeleri yapmakla bu tartışmanın tümünün LRC devresine uygulanabileceğini kolayca 
gösterebiliriz. Bunun için m’yi L ile, b’yi R ile ve k’yı 1/C ile değiştirerek aşağıdaki sonuçları elde 
ederiz: 

𝜔0  =  1/(𝐿𝐶)1/2,        𝜏 =  2𝐿/𝑅,             𝑄𝐾 = 1
𝑅

(𝐿
𝐶

)1/2   (45) 

Bir de QK = ω0τ/2 olduğunu da belirtelim.  

Yukarıdaki sonuçlar, herhangi bir yaklaşıklığa gitmeksizin Eşitlik-35 veya 36’nın genel çözümlerini 
kullanarak elde edilebilir. Bu çözümler aynı zamanda heraketin öteki ilginç özeliklerini de 
gösterirler. Bu çeşit diferensiyel denklemlerin nasıl çözüleceğinin ayrıntılarına girmeksizin, Eşitlik-
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36’nın en genel çözümünün  
 

𝑄 = 𝑄0𝑒−𝑡/𝜏𝑐𝑜𝑠�(𝜔0
2 − 1/𝜏2)1/2𝑡 + φ�      (46) 

ifadesi ile verildiğini belirtelim. Burada ω
0 

ve τ sırası ile Eşitlik-34 ve 44a ile verilir. Uygun 
türevleri hesaplayıp yerine koyarak Eşitlik-46’nın Eşitlik-36’nın bir çözümü olduğunu 
doğrulayabiliriz.  

Eşitlik-46, genliği τ gevşeme zamanı ile üstel olarak azalan yaklaşık çözüm olarak aldığımız 
sinüssel salınımın benzeridir. Fakat arada önemli bir fark vardır. Açısal frekans, ω

0 
sönümsüz 

frekans ile değil, bundan her zaman daha küçük bir nicelik olan (𝜔0
2-1/τ2)

1/2 
ile verilir. Sınıra gidince 

b veya R → 0 iken bu ω
0’ 

a eşit olur, fakat sönüm olduğu durumda frekans her zaman sönümsüz 
duruma göre daha küçüktür ve salınım daha yavaştır.  
 
Bundan başka Eşitlik-46, sönümün ω

0
τ = 1 olacak kadar büyük olması halinde, frekansın sıfır 

olacağını gösterir; o zaman salınım olmaz ve azalma yalın üstel düşüş şeklindedir. ω
0
τ = 1 koşulu 

kritik sönüm olarak bilinir. Sönümlü harmonik salıngan için kritik sönümü dizge parametreleri 
cinsinden veren koşul:  

2(𝑚𝑘)1/2/𝑏 =  1       (47) 
 
veya LRC devresi için:  
     2

𝑅
(𝐿
𝐶

)1/2 = 1       (48) 

dir. Başka bir deyimle, τ üstel azalma katsayısının zaman sabiti T0/2π den daha küçük olunca kritik 
sönüm olur. Burada T0 dizgede sönüm olmadığı haldeki periyoddur. Bundan daha az sönüm ile de 
salınım olur ve dizgeye sönüm üstü denir. Bundan daha fazlasında hareket üstel olur ve dizgeye 
sönüm altı denir. Kritik sönüm için QK = 1/2’dir.  

SİNÜSSEL SÜRÜCÜ KUVVETE KARŞI TEPKİ  

Tıpkı Deney ED-1’de incelenen RC devresinde yaptığımız gibi, LRC devresini incelemeyi, 
devrenin sinüssel sürücü bir gerilime verdiği tepkiyi bulmaya değin genişletebiliriz. Gerçekten LRC 
devresinin önemli pratik uygulamalarının çoğunda devrenin frekansa tepki belirtgenleri kullanılır.  

Şekil-29’daki devreyi göz önüne alalım ve  

𝑉 = 𝑉0𝑐𝑜𝑠ω𝑡                                                                         (49)  

ile verilen sinüssel bir sürücü gerilim kaynağı dışında bu devrenin Şekil- 27’deki ile özdeş olduğuna 
dikkat edelim. Burada, ω açısal frekansı genellikle devrenin ω

0 
= 1/(LC)

1/2 
belirtgen frekansına eşit 

değildir; fakat bu gerilimi oluşturan üretecin belirtgenleri ile belirlenir.  
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ŞEKİL 29  

Çeşitli potansiyel farklarının işaretlerine özellikle dikkat ederek, Şekil-29’daki devreye Kirchoff’un 
ilmek yasasını uyguladığımızda, Eşitlik-36’dan tek farkın 𝑉0𝑐𝑜𝑠𝜔𝑡 teriminin eklenmesi olduğu 
görülür. Bu durumda geçerli diferensiyel denklem:  

𝐿 𝑑2𝑄
𝑑𝑡2

+ 𝑅 𝑑𝑄
𝑑𝑡

+ 𝑄
𝐶

= 𝑉0𝑐𝑜𝑠𝜔𝑡                                                                        (50) 

dir.  
 
Bu durumda sığanın Q yükünün zamanla değişimi, Eşitlik-50’nin çözümü olan bir fonksiyon ile 
anlatılır. Çözüm, tıpkı Deney ED-1’in RC devresindeki gibi bulunur. Çözümün, frekansı, sürücü 
geriliminki ile aynı olan fakat aralarında bir faz farkı bulunan  

       
                          𝑄 =  𝑄0 𝑐𝑜𝑠(𝜔𝑡 +  φ)                                                             (51)  

şeklinde bir sinüs fonksiyonu olduğunu düşünelim.  

Şimdi bu bağıntının çözüm olabilmesi için, Q0 ve φ’nin gerekli değerlerini, bunu ve türevlerini 
Eşitlik-50’de yerlerine koyarak bulalım. sin(ωt + φ) ve cos(ωt + φ) fonksiyonlarını, önceki gibi, açıp 
terimleri sinωt ve cosωt parantezlerine alalım. Buradaki katsayılar Deney ED-1’deki nedenlerle ayrı 
ayrı yok olmalıdır. Bu koşulu uyguladığımızda  

– 𝑄0𝜔2𝐿𝑐𝑜𝑠(𝜔𝑡 +  φ)−𝑄0𝜔𝑅𝑠𝑖𝑛(𝜔𝑡 +  φ) + 𝑄0
𝐶
𝑐𝑜𝑠(𝜔𝑡 +  φ) = 𝑉0𝑐𝑜𝑠𝜔𝑡 

 
elde ederiz. Bu ifadede sin (ωt + φ) ve cos (ωt + φ) ifadelerini açıp, sin ωt ve cos ωt  parantezlerine  
alarak  
 
𝑄0[(1/𝐶 − 𝐿𝜔2)𝑐𝑜𝑠φ− 𝑅𝜔𝑠𝑖𝑛φ]𝑐𝑜𝑠𝜔𝑡 − 𝑄0[(1/𝐶 − 𝐿𝜔2)𝑠𝑖𝑛φ + 𝑅𝜔𝑐𝑜𝑠φ]𝑠𝑖𝑛𝜔𝑡 = 𝑉0𝑐𝑜𝑠𝜔𝑡 

 
yazabiliriz. Burada cosωt ve sinωt’nin katsayılarını sıra ile eşitleyerek  

        
𝑄0[(1/𝐶 − 𝐿𝜔2)𝑐𝑜𝑠φ− Rωsinφ] = 𝑉0                                              (52a) 

 
   𝑄0[(1/𝐶 − 𝐿𝜔2)𝑠𝑖𝑛φ + Rωcosφ] = 0                                     (52b) 

 
Elde ederiz. Eşitlik-52b’yi yeniden düzenleyerek: 

       𝑡𝑔φ = 𝑅
𝜔𝐿−1/𝜔𝐶

                     (53) 
 
 Eşitlik-52a’yı sinφ ile bölüp Eşitlik-53’ü yerine koyalım ve Q0’ ı çözelim:  
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 𝑄0 = − 𝑉0
𝜔 𝑅

𝑠𝑖𝑛φ                            (54) 

buluruz. Q
0
, içinde φ bulunmayacak şekilde de belirtilebilir:  

𝑄0 =
𝑉0
𝜔

[𝑅2+(𝜔𝐿−1/𝜔𝐶)2]1/2                                                                    (55) 

Eşitlik-53 ile 55’in önemi, Q
0 

ve φ’yi ω sürücü gerilim frekansının fonksiyonu olarak veren Şekil-

30’dan görülebilir. Çok alçak frekanslarda, faz açısının sıfır ve tıpkı RC devresinde olduğu gibi, Q 
yükünün sürücü gerilim ile aynı fazda olduğunu görürüz. Daha yüksek frekanslarda φ, gittikçe 
eksileşir ve çok yüksek frekans sınırında Q, V’den yarım-dönem (φ = – π) geridedir.  

 

ŞEKİL-30 

Bu Q
0 

genliği ω ile ilginç biçimde değişir; (ωL –1/ωC)’nin sıfır olduğu φ = -π/2 durumunda  

(𝑄0)𝑚𝑎𝑥 = 𝑉0
𝜔𝑅

       (56) 
 
en büyük değerine ulaşır. Bu, ω = (1/LC)

1/2 
olduğu zaman gerçekleşir; bu da devrenin ω

0 
sönümsüz 

frekansından başka bir şey değildir. Yani, sürücü frekansın doğal sönümsüz frekansa eşit olması 
halinde dizgenin tepkisi en büyüktür. Belli bir frekansta tepkinin “tepe değerine ulaşmasına” 
rezonans denir, buna benzer rezonans olayları fiziğin hemen bütün dallarında görülür.  
 
Q

0
‘ı  ω’ya bağlı olarak veren eğrinin tepesinin keskinliği ilginçtir; ω L – 1/ω C = ± R iken Q

0 
ın en 

büyük değerinin 1/√2 ’sine düştüğünü ve φ= – π/4 veya – 3π/4 olduğunu Eşitlik-53 ve 55’den 
görürüz. Tepkinin maksimumunun 1/√2’ye düşmesi için ω, ω

0 
dan ne kadar farklı olmalıdır? Bu 

sorunun karşılığını bulmak için ω’yı ω
0
+ ∆ω olarak gösterip  

 
(𝜔0 + ∆𝜔)𝐿 − 1

[(𝜔0+∆𝜔)𝐶] = ±𝑅                  (57)  
 
eşitliğini sağlayan ∆ω’nın değerini buluruz.  
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Bu denklemden ∆ω tam olarak çözülebilir. Fakat sönümün, eğrinin tepesini oldukça keskin yapacak 
kadar küçük ve ∆ω <<ω

0 
olduğunu düşünerek yapılan yaklaşıklık çok büyük bir kolaylık sağlar ve 

daha çok bilgi verir. Bu durumda;  
1

(𝜔0 + ∆𝜔) ≅ 1/𝜔0 − ∆𝜔/𝜔2 

dır, bu uzun bir bölme işlemi ile doğrulanabilir. Bu sonucu  ω0 = (1/LC)
1/2 

ile birlikte Eşitlik- 57’de 
kullanıp basitleştirmeleri yaparak  

∆𝜔 = ± 𝑅
2𝐿

= ±1/𝜏      (58) 
 
elde edilir. Eşitlik-58, R küçük olunca ∆ω’nın da küçük olacağını ve tepki eğrisi tepesinin her iki 
yanında keskince düştüğünü gösterir. R’nin daha büyük değerleri, daha yassı, daha geniş bir tepe 
verir. Tepki eğrisinin “genişliği”nin daha önce tartışılan nitelik katsayısı ile doğrudan ilgili 
olduğunu da belirtelim. Eşitlik-45 ile 58’i birleştirerek,  
 

        𝑄𝐾 = 𝜔0/(2∆𝜔)                    (59) 
buluruz.  

Şu halde devrenin sönüm belirtgenleri doğrudan onun frekans tepkisine bağlıdır; QK’nın büyük 
olması sönümün küçük gevşeme zamanının uzun ve tepki eğrisinin keskince dikleşmesi demektir. 
QK’nın küçük olması ile bunların tersi olur.  

Devredeki I akımı Eşitlik-51’in zamana göre türevinden başka bir şey değildir ve fazı her zaman 
Q’dan π/2 öndedir. Bunun için, rezonansta I, V ile aynı fazdadır ve R’den L ile C sanki kısa-devre 
yapılmış gibi akım geçer. Bu nedenle ω

0
, R’de en çok güç harcamasına yol açan frekanstır. 

Dirençteki güç kaybının ω = ω0 ± ∆ω frekanslarında en büyük değerinin yarısı olduğu kolayca 
gösterilebilir. Bu frekanslara yarı-güç noktaları da denir.  

 

DENEY 

1. SALINIMLAR  

Bir LRC devresinde sönen salınımların gözlemi ve üstel azalmanın incelenmesi Deney ED-1’de 
kullanılan teknik ile yapılabilir. Burada kare-dalga üreteci, periyodlu olarak açılıp kapanan bir 
üreteç işini görür. Bunun için Şekil-31’deki devre önerilebilir. Osiloskop, C’nin uçları arasındaki 
gerilimi ölçer; süpürme kare-dalga ile zamandaşdır, dolayısı ile yatay eksen (zaman), kare dalganın 
bilinen frekansına göre ayarlanabilir.  

Sönen salınımların frekansını ve yarı-ömrünü ölçünüz; ω
0 

ile τ’yu hesaplayınız ve Eşitlik-44 ve 
45’den bulunanlar ile karşılaştırın. Bu devredeki R, Deney ED-1’de tartışılan kare-dalga üretecinin 
iç direncini ve elektronik volt-ohmmetre ile ölçülebilen indüktans direncini gösterir.  
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ŞEKİL-31 

 

2. KRİTİK SÖNÜM  

Kritik sönüm ile sönüm üstünü incelemek için R sabit direncine 25 kΩ’luk değişken bir direnç 
ekleyin. Küçük bir değerinden başlayarak R’yi kritik sönüme ulaşıncaya kadar artırın. R’yi 
ohmmetre ile ölçünüz ve Eşitlik-48’den bulunan kritik sönüm direnci ile karşılaştırın. Direnç, kritik-
sönüm değerinden daha büyük olursa ne olur?  

3. FREKANS TEPKİSİ  
 
Bir sinüssel sürücü gerilime karşı frekansın tepkisini incelemek için aynı devre sinüs-dalga üreteci 
ile kullanılabilir (Şekil-32). Deney ED-1’de tartışılan tekniği kullanarak genliği ve φ fazını 
frekansın fonksiyonları olarak ölçünüz ve elde edilen değerlerin grafiğini çiziniz. Gözlenen 
rezonans frekansını önceden kestirilen ile karşılaştırın.  

4. NİTELİK KATSAYISI  

“Yarı-güç” frekansları ile yarı-güç noktaları için ω’yı bulunuz ve devrenin QK’sını hesaplayınız, 
bunu sönen salınımdan bulunan QK ile karşılaştırın.  

 

ŞEKİL-32 
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SORULAR  

1 Dirençsiz bir LC devresinde sığa yükünün en çok olduğu halde akımın sıfır olduğunu ve 
bunun tersinin de doğru olabileceğini gösterin.  

2 R yalnız indüktans sarımlarının direncinden oluşmuş ve dış direnç sıfır ise LRC devresinin 
nitelik katsayısı ne olur?  

3 Eşitlik-55’in ω’ya göre türevini alıp sıfıra eşitleyerek, Q0’ 
ın en büyük değerini yalnız R’nin 

küçük olması halinde tam ω
0 

da olduğunu ve daha büyük R değeri için rezonans tepesinin 
biraz daha küçük bir frekansta meydana geldiğini gösterin. Eğer R yeterince büyük ise 
eğrinin hiç tepesi olmayacağını ve ω’nın sürekli olarak düşen bir fonksiyonu olacağını 
gösterin. R’nin kritik değerini ve buna karşılık gelen QK’yı bulunuz. İp ucu: Eşitlik-55’i 
yalnızca ω2 

bulunacak şekilde düzenleyip ω2 yerine tek bir simge (diyelim y) kullanır ve 
1/Q2 

niceliğinin y’e göre diferensiyelini alarak yapılan hesabı basitleştirebiliriz.  
4 Sinüssel sürücü gerilim halinde C’deki gerilim ile L’deki gerilim arasındaki faz bağıntısı 

nedir? C’deki gerilim ile R’deki gerilim arasındaki faz bağıntısı nedir?  
5 Rezonans frekansında, L ile C’deki gerilimlerin büyüklükçe eşit olduğunu ve aralarında 

yarım dönemlik bir faz farkı bulunduğunu, böylece L ile C’deki toplam potansiyel farkının 
sıfır olduğunu gösterin.  

6 Rezonans frekansı a) 10-2 
Hz, b) 1010 Hz olan bir LC devresinin düzenlenmesinde ne gibi 

sorunlarla karşılaşılır?  
7 sığadaki gerilimin VC 

rezonans genliğinin sürücü gerilimin V0 genliğinden çok daha büyük 
olabileceğini ve bunun VC 

= (QK)V0 ile verildiğini gösterin.  
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Deney ED - 4  
Çiftlenimli Salınganlar  
GİRİŞ  

Bu deneyde, mekaniksel harmonik salınganlar veya LC devreleri gibi salıngan iki dizge arasında 
etkileşimin nasıl olduğunu inceleyeceğiz. Deneysel inceleme elektrik devreleri üzerinde olacaktır. 
Fakat temel kavramları daha kolay gözlenen ve alışık olduğumuz mekanik dizgeler yolu ile 
işleyeceğiz.  

Şekil-33’de gösterilen dizgeyi göz önüne alalım.  

 

ŞEKİL-33 Çiftlenimli kütle-yay sistemi. 

Kütleler doğrusal hava rayındaki gibi sürtünmesiz yatay bir doğru boyunca hareket etmektedir. Eğer 
k' yayı olmasa idi dizge  

𝜔 =  (𝑘/𝑚)1/2      (60) 

açısal frekansında ve herhangi bir genlik ile salınabilen iki özdeş harmonik salıngan olacaktı. k' yayı 
iki salınganın etkileşmesini sağlar ve bileşik dizgenin davranışını ilginç bir şekilde değiştirir.  

Bu dizgeyi daha ayrıntılı olarak çözümlemek için her kütleye karşılık bir hareket denklemi(F = ma)  
yazarak elde edilen denklemler takımının çözümlerini bulmaya çalışalım. x

1 
ve x

2 
koordinatları 

kütlelerin denge konumundan uzaklaşmalarını göstermektedir. Birinci kütleye sol yaydan doğan      
-kx

1 
ve orta yaydan ileri gelen k'(x

2 
–x

1
) kuvvetleri etkimektedir. Böylece birinci kütlenin hareket 

denklemi için  

𝑚𝑑2𝑥1
𝑑𝑡2

= −𝑘𝑥1 + 𝑘′(𝑥2 − 𝑥1)               (61a) 
  
yazabiliriz. Benzerince ikinci kütlenin hareket denklemi için  

𝑚𝑑2𝑥2
𝑑𝑡2

= −𝑘𝑥2 − 𝑘′(𝑥2 − 𝑥1)                (61b) 

yazabiliriz. Bu iki denklemi tekrar düzenlersek 

𝑚𝑑2𝑥1
𝑑𝑡2

+ (𝑘 + 𝑘′)𝑥1 − 𝑘′𝑥2 = 0        (62a) 

𝑚𝑑2𝑥2
𝑑𝑡2

+ (𝑘 + 𝑘′)𝑥2 − 𝑘′𝑥1 = 0         (62b) 
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elde ederiz. x1 
yerine x2 

koyduğumuzda iki kütlenin hareket denklemlerinin şekilce tam aynı 
olduğunu görürüz. Hiç kuşkusuz, bu simetri fiziksel durumun simetrisinden ileri gelmektedir.  

Sezgimiz bu denklemlerin çözümlerinin bulunmasında bize yol gösterecektir. İki kütle aynı faz ve 
aynı genlik ile salındığında basitçe görülen bir hareket ortaya çıkar; bu durumda k' yayı hiç bir 
kuvvet meydana getirmez ve her iki kütle ω = (k/m)1/2 

frekansı ile basit harmonik hareket yapar. 
Her iki kütlenin aynı frekansla [bunun (k/m)1/2 ye eşit olması gerekmez] başka bir sinüssel hareket 
yapması olanağı var mıdır? Bu soruyu cevaplandırmak için;  

𝑥1 =  𝐴1 𝑐𝑜𝑠 𝜔𝑡      

𝑥2  = 𝐴2 𝑐𝑜𝑠 𝜔𝑡       (63) 

şeklinde bir çift çözüm deneyelim. Bu deneme çözümlerini türevleri ile birlikte Eşitlik-62’de 
yerlerine koyarak çözüm olup olmadığını, yani diferensiyel denklemleri sağlayıp sağlamadıklarını 
buluruz. Bunları yerlerine koyup cosωt ortak katsayısı ile böldüğümüzde;  

 𝑚 ω2𝐴1– 𝑘𝐴1  +  𝑘′(𝐴2 – 𝐴1) = 0  
 𝑚 ω2𝐴2– 𝑘𝐴2 −  𝑘′(𝐴2 – 𝐴1) = 0  

 
buluruz. Her bir denklemi A1 

ve A2 
parantezlerine alarak  

[(𝜔2 − (𝑘 + 𝑘′)/𝑚]𝐴1 + �
𝑘′

𝑚
�𝐴2 = 0 

                       �
𝑘′

𝑚
� 𝐴1 + [(𝜔2 − (𝑘 + 𝑘′)/𝑚]𝐴2 = 0     (64) 

 
Öyle ise, A1 

ve A2 
genlikleri Eşitlik-64’ü sağlayınca Eşitlik-63,  Eşitlik-62’nin çözümüdür.  

Eşitlik-64 türdeş (homojen) çizgisel denklemler takımıdır. Çözümün olabilmesi için katsayı 
determinantı sıfıra eşit olmalıdır: 

�
(𝜔2 − (𝑘 + 𝑘′)/𝑚 𝑘′

𝑚
𝑘′

𝑚
(𝜔2 − (𝑘 + 𝑘′)/𝑚

� = 0    (65) 

Bu determinantın açılımı yapılırsa  

[𝜔2 − (𝑘 + 𝑘′)/𝑚]2 = [𝑘′/𝑚]2 
elde edilir. Kare kök alınarak  

𝜔2 −
𝑘 + 𝑘′

𝑚
= ±𝑘′/𝑚 

 
𝜔2 = 𝑘/𝑚  ve 𝜔2 = 𝑘+2𝑘′

𝑚
 

 
ve son olarak  

ω= �𝑘
𝑚
�
1/2

  ve  ω= �𝑘+2𝑘′
𝑚

�
1/2

     
 
elde edilir. Köklerin büyüğü ve küçüğü için ω+ ve ω– 

gösterimlerini kullanarak  
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     𝜔+ = �𝑘+2𝑘′
𝑚

�
1/2

  ve  𝜔− = �𝑘
𝑚
�
1/2

          (66) 
 

yazarız.  
Şu halde ω’nın Eşitlik-66’da verilen değerlerden birini alması halinde iki kütle aynı frekansla 
sinüssel olarak hareket edebilir. Eşitlik-65 takımının birine, ω+ veya ω– 

değerleri yerleştirilmekle 
gösterebileceği gibi genlikler arasında da kesin bir bağıntı bulunmalıdır. Birinci denklemi alıp ω+ yı 
yerine koyduğumuzda,  

𝐴1 = −
𝑘′
𝑚

𝑘 + 2𝑘′
𝑚 − 𝑘 + 𝑘′

𝑚
𝐴2 = −𝐴2 

buluruz. Aynı işlem ω– 
 için yapılacak olursa bu kök için A

1 
= A

2 
olduğu ortaya çıkar. 

Şimdi bu sonuçları yorumlayabilecek durumdayız. ω- kökü az önce incelediğimiz hale uyar ve bu 
iki kütlenin aynı frekans ve aynı genlik ile çiftlenimsiz salınganlar gibi titreşmesine karşılık gelir. 
Bu durumda k′ çiftlenin yayının hiç bir etkisi yoktur. Öteki durumda ise genlikler zıt işaretli 
olduklarından hareketlerin genlikleri eşittir, aralarında yarım dönemlik bir faz farkı vardır. Bu halde 
çiftlenim yayı geri çağırıcı ek bir kuvvet oluşturduğundan ω frekansı çiftlenimsiz dizgelerin 
frekansından daha büyüktür.  

Hareket denklemleri çizgisel diferensiyel denklemler olduğundan çözümlerin bir toplamı da bir 

çözümdür. Elde ettiğimiz genlikler arasındaki bağıntıları bir araya getirerek dizgenin fiziksel 

olanaklı bütün hareketlerini kapsayan en genel  

𝑥1 =  𝐴𝑐𝑜𝑠𝜔− 𝑡 +  𝐵𝑐𝑜𝑠𝜔+𝑡  

   𝑥2  =  𝐴𝑐𝑜𝑠𝜔− 𝑡  −  𝐵𝑐𝑜𝑠𝜔+𝑡    (67) 

çözümünü elde ederiz. Burada A ve B, başlangıç koşullarına bağlı gelişi güzel sabitlerdir.  

Tek frekanslı hareketin herbirine normal kip denir; genel olarak hareket normal kip hareketlerinin 

bir karışımıdır. Fakat özel başlangıç koşullarının bir sonucu olarak A veya B genliklerinden biri 

sıfır olursa iki kütlenin, meydana gelen tek frekanslı hareketine normal kip denir. Normal kiplerden 

ikisi Şekil-34’de gösterilmiştir.  

 

ŞEKİL-34 

İlginç bir durum, özellikle k' çiftlenim yayının öteki ikisinden çok zayıf (yani k' << k) olması 
halinde A ve B genliklerinin eşit olması ile ortaya çıkar. O zaman Eşitlik-67, ilginç ve öğretici bir 
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şekle sokulabilir. Bu halde ω+ 
ve ω–  

normal -kip frekansları hemen hemen eşittir. Bu durumda  

 
𝜔0 = 𝜔++𝜔−

2
  , ∆𝜔 = 𝜔+−𝜔−

2
 

  
veya 

𝜔− = 𝜔0 − ∆𝜔 , 𝜔+ = 𝜔0 + ∆𝜔    (68) 

gösterimlerinin kullanılmasında yarar vardır. Burada ω0, normal kip frekanslar ortalaması, ∆ω 
herbirinin ortalamadan olan farkıdır. Açıkça görüldüğü gibi, eğer k′ << k ise o zaman ∆ω <<ω0 

dır.  

Şimdi bu gösterimi A = B varsayımı ile birlikte Eşitlik- (67)’de kullanalım ve her kosinüsü           

𝑐𝑜𝑠(𝑎 ±  𝑏) =  𝑐𝑜𝑠𝑎𝑐𝑜𝑠𝑏 ∓  𝑠𝑖𝑛𝑎𝑠𝑖𝑛𝑏 

formülüne göre açalım:  

𝑥1 = 𝐴𝑐𝑜𝑠(𝜔0 − ∆𝜔)t + Acos(𝜔0 + ∆𝜔)t

= 𝐴(𝑐𝑜𝑠𝜔0𝑡𝑐𝑜𝑠∆𝜔𝑡 + 𝑠𝑖𝑛𝜔0𝑡𝑠𝑖𝑛∆𝜔𝑡 + 𝑐𝑜𝑠𝜔0𝑡𝑐𝑜𝑠∆𝜔𝑡 − 𝑠𝑖𝑛𝜔0𝑡𝑠𝑖𝑛∆𝜔𝑡

= 2𝐴𝑐𝑜𝑠(∆𝜔𝑡)𝑐𝑜𝑠𝜔0𝑡 

𝑥2 = 𝐴𝑐𝑜𝑠(𝜔0 − ∆𝜔)t − Acos(𝜔0 + ∆𝜔)t

= 𝐴(𝑐𝑜𝑠𝜔0𝑡𝑐𝑜𝑠∆𝜔𝑡 + 𝑠𝑖𝑛𝜔0𝑡𝑠𝑖𝑛∆𝜔𝑡 − 𝑐𝑜𝑠𝜔0𝑡𝑐𝑜𝑠∆𝜔𝑡 + 𝑠𝑖𝑛𝜔0𝑡𝑠𝑖𝑛∆𝜔𝑡

= 2𝐴𝑠𝑖𝑛(∆𝜔𝑡)𝑠𝑖𝑛𝜔0𝑡 

Burada x
1 

ve x
2 
için bulunan sonuçları tekrar yazalım:  

𝑥1 = 2𝐴𝑐𝑜𝑠(∆𝜔𝑡)𝑐𝑜𝑠𝜔0𝑡 

𝑥2 = 2𝐴𝑠𝑖𝑛(∆𝜔𝑡)𝑠𝑖𝑛𝜔0𝑡      (69)  

Hareket basit sinüssel hareket değildir, çünkü koordinatların her biri zamanla iki sinüssel 
fonksiyonun çarpımı şeklinde değişmektedir. Bununla birlikte fonksiyonlardan biri zamanla, 
frekansı ∆ω olmak üzere ağır değişirken öteki iki normal kip frekansı arasında ω0 

frekansı ile daha 
hızlı değişir. Bunun için bu hareketlerin frekansının ω0 olduğunu ve genliğinin de sıfır ile 2A 
arasına değiştiğini düşünebiliriz. Bu yorum Eşitlik-69’daki parantezlere dayanmaktadır. Bundan 
başka x1 

genliği en büyük olduğu sırada (yani cos ∆ωt = ± 1 iken) x2 
genliğinin sıfır olduğu ve aynı 

şeklide bunun tersinin de olabileceği görülmektedir. Başlangıçta 2. kütle hareketsizdir, 1.kütle, 2A 
genliği ile titreşmektedir. 2. kütlenin 2A genliği ile titreşmeğe koyulduğu ∆ωt = π/2 ile verilen bir 
süre sonunda bu genlik azalmış sıfır olmuştur. Bu hareket, x1 

ve x2 
grafiklerini zamanın fonksiyonu 

olarak veren Şekil-35’de grafik halinde gösterilmiştir.  
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ŞEKİL-35 

ENERJİ BAĞINTILARI   

Bu durumu enerji bağıntıları yönünden ele alabiliriz. 𝑡 =  0 anında bütün enerji salıngan 1’dedir. 𝑘′ 
yayı ile sağlanan çiftlenimden dolayı enerjinin tümü salıngan 2’de toplanıncaya kadar enerji 
salıngan 2’ye aktarılır. Sonra enerji yeniden salıngan 1’e geçmeğe başlar. Enerjinin 1’den 2’ye 
gidip geri dönmesi için geçen alışveriş zamanı olarak adlandırabileceğimiz 𝑡𝑎𝑙𝚤ş−𝑣𝑒𝑟𝑖ş zamanı    
∆𝜔𝑡𝑎𝑙𝚤ş−𝑣𝑒𝑟𝑖ş  =  𝜋 bağıntısı ile verilir.  

Periyotlu enerji alış verişinin açısal frekansı  

𝜔𝑎𝑙𝚤ş−𝑣𝑒𝑟𝑖ş = 2𝜋 𝑡𝑎𝑙𝚤ş−𝑣𝑒𝑟𝑖ş = 2∆𝜔⁄                           (70) 

ile verilir.  

ELEKTRİKSEL BENZERLİK  

Buraya kadar olan deneylerde tartıştığımız elektromekanik benzerleri kullanarak çiftlenimli iki 
harmonik salınganın elektrikteki benzerini bulabiliriz. Kütle-yay dizilimi indüksiyon-sığa 
dizilimine, çiftlenim yayı da çiftlenim sığasına karşılık gelir. Özel olarak, elektriksel benzer dizge 
Şekil-36’da görülen devredir. 

 

ŞEKİL-36 
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Bunun gerçekten biraz önce tartışılan mekanik dizgenin bir benzeri olduğunu ayrıntılı bir şekilde 
doğrulamak için Kirchoff’un gelirim (ilmek) kuralını her ilmeğe iki kez uygulayarak devre 
denklemlerini yazalım. Çeşitli yük ve akımlar şekilde gösterildiği gibi işaretlenmişlerdir. C′ 
çiftlenim sığasındaki yük ± (Q

1 
– Q

2
) olup bunun karşılığı olan gerilim ± (Q1– Q

2
)/C'  dür. Şekil- 

36’da gösterilen yük ve akımların tanımlarından akımlar I
1 

= dQ
1
/dt ve I

2 
= dQ

2
/dt ile verilir. 

İndüksiyoncuların uçları arasındaki gerilimler, I
2 

için de aynı olmak üzere, L dI
1
/dt = -L d

2
Q

1
/dt

2 
ile 

verilir. Devre denklemleri şöyledir:  

−
𝑄1
𝐶
− 𝐿

𝑑2𝑄1
𝑑𝑡2

+
𝑄2 − 𝑄1
𝐶′

= 0 

−𝐿
𝑑2𝑄2
𝑑𝑡2

−
𝑄2
𝐶
−
𝑄2 − 𝑄1
𝐶′

= 0 

veya 

𝐿 𝑑2𝑄1
𝑑𝑡2

+ �1
𝐶

+ 1
𝐶′
� 𝑄1 −

1
𝐶′
𝑄2 =0              (71a) 

           𝐿 𝑑2𝑄2
𝑑𝑡2

+ �1
𝐶

+ 1
𝐶′
�𝑄2 −

1
𝐶′
𝑄1 = 0                 (71b) 

Bu son iki denklemi çiflenimli harmonik salınganların Eşitlik-61 ile karşılaştırdığımızda bunların 
şekilce özdeş olduklarını görürüz. Buradaki elektromekaniksel benzerlikler önceki deneylerde 
bulduklarımızın aynıdır: L ↔ m, 1/C ↔ k, Q ↔ x ve I ↔ v. Şu halde, her iki kip birlikte bulunduğu 
zamanki enerji aktarılması, dizgenin iki parçası çiftlenimsiz olduğu zaman davranışı ve normal 
kiplerin anlatımını da ekleyerek yukarıda çiftlenimli harmonik salınganlar için söylenilen her şeyi 
çiftlenimli LC rezonans devreleri için de tekrarlayabiliriz. Burada k′ = 0, sonsuz derecede büyük C′ 
çiftlenim sığası karşılığıdır. Böyle bir sığanın özeliği, sığa ne kadar yüklenirse yüklensin uçları 
arasındaki gerilimin sıfır olmasıdır. Genel olarak bir sığa için V = Q/C’dir. 
Buna göre, Q’nün herhangi belli bir değeri için V sıfırdır. Bu nedenle C' bir kısa devre gibi davranır 
ve iki LC devresi çiftlenimsiz olur. ∆ω << ω

0 
zayıf çiftlenim koşulu C′’ nün C’den çok daha büyük 

olmasıdır, bu ise yukarıdaki açıklamalar olmasa idi çelişki olurdu.  
 

Normal kip frekansları:  
𝜔− = ( 1

𝐿𝐶
)1/2                 (72a) 

𝜔+ = �1
𝐿

(1
𝐶

+ 2
𝐶′

)�
1/2

                (72b) 
    

Şekil- 37.a’da gösterildiği gibi 𝜔− , iki akımın aynı yönde olmasına karşılık olur ve böylece C'’ den 
hiç akım geçmez, şekil 37.b’deki durum ise 𝜔+ da zıt yöndeki akımlara karşılıktır.  
 

 

ŞEKİL-37 
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Eğer C' >>C ise Eşitlik-72’yi Taylor serisine açmak yararlıdır:  

𝜔+ = (
1
𝐿𝐶

)1/2(1 + 2
𝐶
𝐶′

)1/2 = �
1
𝐿𝐶
�
1
2

(1 +
𝐶
𝐶′
−

1
4
𝐶2

𝐶′2
+ ⋯ ) 

O zaman ω
0 

ortalama frekansı yaklaşık olarak  

𝜔0 = (1 + 𝐶
2𝐶′

)( 1
𝐿𝐶

)1/2      (73) 

ile verilir ve 𝜔𝑎𝑙𝚤ş−𝑣𝑒𝑟𝑖ş = 𝜔+ − 𝜔− 
 
alış-veriş frekansı yaklaşık olarak  

𝜔𝑎𝑙𝚤ş−𝑣𝑒𝑟𝑖ş ≅  𝐶
𝐶′

(1/𝐿𝐶)1/2 = 𝐶
𝐶′
𝜔0     (74) 

olur.  

Normal modların (kiplerin) incelenmesine ek olarak ilmeklerden birine Şekil-39’deki gibi sinüssel 
bir gerilim uygulanması halinde dizgenin davranışını da inceleyebiliriz. Bu durumun çözümlenmesi 
kolayca yapılabilir. Bu durumda Eşitlik-71a’ya V(t) = V0cosωt terimini eklemektir. Bu durumda 
Eşitlik-71a ve b yerine  

𝐿 𝑑2𝑄1
𝑑𝑡2

+ �1
𝐶

+ 1
𝐶′
� 𝑄1 −

1
𝐶′
𝑄2 = 𝑉0cosωt                      (75a) 

           𝐿 𝑑2𝑄2
𝑑𝑡2

+ �1
𝐶

+ 1
𝐶′
�𝑄2 −

1
𝐶′
𝑄1 = 0                 (75b) 

yazabiliriz. Ondan sonra uygulanan gerilimin ω frekansı ile aynı frekansta olan  
 

     𝑄1 = 𝐴1𝑐𝑜𝑠𝜔𝑡        𝑄2 = 𝐴2𝑐𝑜𝑠𝜔𝑡                               (75c) 
 
şeklinde çözümler ararız. Bu durumda A’nın denklemleri artık türdeş (homojen) değildir ve A’lar 
her zaman tam çözülebilir (Bunun için Vibrations and waves, George G. King ve Vibrations and 
waves, A. P. French kitaplarına bakabilirsiniz.). A1 ve A2 katsayıları için 
 

𝐴1 = 1
2
𝑉0
𝐿
� 1
𝜔−2−𝜔2 + 1

𝜔+
2−𝜔2�            (75d) 

𝐴2 = 1
2
𝑉0
𝐿
� 1
𝜔−2−𝜔2 −

1
𝜔+
2−𝜔2�            (75e) 

 
sonucunu elde ederiz (Bu işlemleri yapmanızı öneririz). A1 ve A2 genliklerinin uygulanan dış 
sürücü gerilimin ω frekansına bağlı davranışları Şekil-37b’de verilmiştir.  
 
Beklenebileceği gibi ω sürücü-gerilim frekansı 𝜔+ 

ile 𝜔− 
  normal mod frekanslarından birine yakın 

olduğunda ilginç şeyler olur. Tıpkı bir çocuğun salıncaktaki başka bir çocuğu salıncağın doğal 
salınım frekansı ile itip enerjiyi en verimli şekilde artırmasında olduğu gibi, üreteç dizgeye bu 
frekanslarda en büyük etkinlikle enerji verir. Sürücü frekansın dizgenin doğal frekansı ile zamandaş 
(eşzamanlı) olmasına rezonans denir. Bunun daha yalın biçimde incelenmesi Deney ED-3’de 
yapılmıştır. 
 
 Özetlersek: 

• 𝜔 < 𝜔− bölgesinde Q1 ve Q2 yükleri aynı fazda titreşirler. 

• 𝜔0 = �𝜔−2+𝜔+
2

2
  değerinde 𝐴1 = 0 dır. 
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• 𝜔 = 𝜔− ve 𝜔 = 𝜔+ olduğunda sistem rezonans durumuna gelir ve yükler çok büyük 
genlikli salınım yaparlar. Bu olaydan yararlanarak sistemin normal modları (ω− ve ω+) 
deneysel olarak belirlenebilir. 

• ω > 𝜔+  bölgesinde Q1 ve Q2 yükleri zıt fazda titreşirler 

 

 
 

ŞEKİL-37b. L=22 mH, C=27 pF, C’=560 pF alınarak çizilmiştir. 

DENEY 

1. SERBEST SALINIMLAR  

Şekil-38’de gösterilen devre çiftlenimli LC devrelerinin davranışını incelemek için kullanılabilir. 
Salınımlar, tıpkı Deney ED-4’deki gibi kare-dalga üreteci tarafından başlatılır. Salınımlar direnç 
yüzünden sonsuza dek süremezler ve sönerler. 270 Ω’luk direnç osiloskopta gözlenebilen küçük bir 
gerilim düşmesi meydana getirir. Dizgeyi çiftlenimsiz salınganların frekansları tam aynı olacak 
şekilde ayarlayabilmek için Şekil-38’de verilen devrede sağ taraftaki salınıcıda 25 pF’lık sabit sığa 
yerine 50 pF’lık değişken bir sığa bağlanır. C' çiftlenim sığası için 560 pF’lık bir ilk değer 
alınabilir.  
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İki devreyi dengelemek için değişken kordansatörü ∆ω frekans farkı en küçük oluncaya kadar 
ayarlayın. Alış-veriş frekansını osiloskopta ölçüp Eşitlik-74’den hesaplanan değer ile karşılaştırın. 
Aynı zamanda, kare dalganın bir dönemine giren salınım sayısını sayarak ω0’ı ölçün. Eşitlik-73’den 
hesaplanan değer ile karşılaştırın. İsterseniz C' çiftlenim sığasının başka değerlerini de 
deneyebilirsiniz. Önerilebilecek başka değerler 47 pF, 200 pF ve 0,001 µF’dır. C' kısa devre 
yapılırsa ne olur? Eğer büsbütün çıkarılırsa ne olur?  

 

ŞEKİL-38 
 

2. ZORLA SALINIM  

Devrenin sinüssel bir sürücü gerilime tepkisini incelemek için Şekil-39’daki devre kullanılabilir. 
Üreteç gerilimini sabit tutarak, çıkış gerilimini frekansın fonksiyonu olarak ölçünüz.  

 

ŞEKİL-39  

Biri, 𝜔−‘de öteki 𝜔+’
 
da olmak üzere iki maksimum bulmalısınız. Bu frekansları C'’ nün birkaç 

değeri için ölçünüz ve önceden Eşitlik-72’den hesaplanan değerler ile karşılaştırın. Gözlenen 
frekans farkını geçici davranıştan bulunan alışveriş frekansı (𝑓𝑎𝑙𝚤ş)  ile karşılaştırın.  
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Akımların faz bağıntısı ω- modu için Şekil-37a’da gösterildiği gibidir. Buna göre C'’ den geçen net 
akım her zaman sıfırdır. Faz 𝜔+  modu için Şekil-37b’deki gibidir ve C'’ den geçen akım ilmeklerin 
her birinden geçen akımın iki katıdır. Bu nedenle C'’ ye seri bağlı bir direncin 𝜔+ modu 
söndürmesi, fakat 𝜔−’yi söndürmemesi gerekir. Olayı, tepki frekansı eğrisi üzerinde incelemek 
ilginç olacaktır. Rezonans tepelerinden hangisi değişir? Bu direncin geçici tepki üzerindeki etkisi 
nedir? 𝜔− modunu nasıl söndürebilirsiz?  Deneyiniz?  

SORULAR  

1 Şekil-33’deki çiftlenimli harmonik salınganlarda ω+ kipini elde etmek için hangi başlangıç 
koşulları kullanılmalıdır? Yalnız ω– kipi için durum nedir? Sadece bir tek koşullar tümcesi 
mi vardır, yoksa her bir kip için birden fazla olabilir mi? 

2 Niçin ω
alış 

alış-veriş frekansı tam ∆ω değil de 2∆ω’dır?  
3 İki LC devresinin en iyi şekilde uyuşmasını niçin ∆ω’nın en küçük olma koşulu sağlar?  
4 Çiftlenimli salınganların sinüssel davranışlarını incelerken ω+ kipini söndürmeden ω– nasıl 

söndürülebilir?  
5 Şekil-40’da gösterilen devrenin mekaniksel benzerini bulun. B dizgenin biri sıfır olmak 

üzere üç normal kip frekansı vardır. Sıfır - frekans kipine hangi fiziksel durum karşılık 
gelir?  

 

ŞEKİL-40  

6 Şekil-41’de gösterilen mekanik dizgenin elektrikteki benzerini bulun. Bunun kaç tane 
normal kipi vardır? Ayrıntılı hesap yapmadan bunlardan herhangi birinin yapısını veya 
frekansını kestirebilir misiniz?  

 
ŞEKİL-41  

7 Bu deneyde kullanılan indüktanslar kusursuz değildir ve indüksiyon katsayılarına ek olarak 
biraz dirençleri vardır. Bu, geçici davranışı kusursuz davranışa göre nasıl değiştirir? Sinüssel 
cevabı nasıl değiştirir?  

8 Şekil-39’daki devrenin sağındaki sığadan geçen akımı sürücü gerilimin genlik ve 
frekansının fonksiyonu olarak veren bir bağıntı bulun, L, C ve C' değerlerini kullanıp tüm 
dirençleri önemsemeyin.  
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Deney ED - 5  
Periyodlu Yapılar ve İletim Yolları  
GİRİŞ  

Deney ED-4’de incelediğimiz çiftlenimli salınganları bu deneyde genişletiyoruz. Çiftlenimli 
iki kütle-yay veya indüktans-sığa dizgeleri (sistemleri) yerine bunlardan birçoğunun birlikte 
çiftlenimli halde oluşturduğu tekrarlı (veya periyodlu) yapıları inceleyeceğiz. İlerde 
göreceğimiz gibi böyle yapılar, geçirdikleri atmaları, zamanca geciktirmek için kullanılabilir 
ve bazı frekansları geçirip ötekilerine kapalı olan süzgeçler şeklinde işlemek gibi ilginç 
özellikleri de varadır. Bu dizgelere çoğu kez süzgeçler, toplu (lumped) - parametreli 
süzgeçler, geciktirme yolları veya yalnız yollar denir. Bu tartışmada çoğunlukla yol terimi 
kullanılacaktır.  

Ne olup bittiğini gözümüzde canlandırabileceğimiz dizgelerin davranışlarını anlamak daha 
kolay olduğu için Şekil-42’de gösterilen periyodlu yapılın oluşturduğu basit mekanik örnek 
ile tartışmaya başlayalım. 

 

ŞEKİL-42  

Sürtünmesiz bir doğru yol boyunca harekete zorlanan bir sıra özdeş m kütlesi aralarındaki 
özdeş k yaylar dizisi ile bağlıdır. Uçtaki iki kütlenin değerleri m/2’dir. Bunlar eklenince 
dizgeyi her biri iki yarım kütle ve bir yaydan oluşan kesimler dizisi olarak düşünebiliriz. 
Bundan başka dizgenin iki ucu kapalı bir yapı oluşturmak üzere birleşirilebilir.  

Eğer iletim yolunun ucundaki bir kütle boylamasına sertçe sarsılarak bırakılırsa, bu şekilde 
oluşan yerdeğiştirme atması yol boyunca yayılır. Atma öteki uca çarpınca geri yansır. Böylece 
iletim yolu boyunca geriye dönen ikinci bir atma türer. Uç yaylarını sabit duvar yerine hız 
kutularına bağlayıp atmaların bir kısmını veya tümünü soğurarak yansımaları önleyebiliriz. 
Yansımaların önlenmesi bu dizgenin elektrikteki benzerinde büyük önem taşır.  

Dizgenin hareketini ayrıntılı olarak çözümlemede izleyeceğimiz yol tıpkı Deney ED-4’deki 
gibi olacaktır. Her kütlenin diferensiyel denklemini denge konumundan olan xn 
yerdeğiştirmesi cinsinden yazmak için ΣF = ma ifadesini kullanalım. Bütün kütlelerin sayısı 
N ise o zaman n indisi 1’den N’ye dek değişir. n’inci kütlenin diferensiyel denklemi yalnız xn’ 
ye değil yayların etkisinden dolayı aynı zamandı xn–1 

ve x'n+1 
e de bağlıdır. İletim yolunun 

ucunda olmayan tipik bir kütle için  

𝑚𝑥̈ = −𝑘(𝑥𝑛 − 𝑥𝑛−1) + 𝑘(𝑥𝑛+1 − 𝑥𝑛) = 𝑘(𝑥𝑛−1 − 2𝑥𝑛 + 𝑥𝑛+1)    (76a) 

Uç kütleler ayrı olarak işlem görmelidir. Böylece  
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1
2
𝑚𝑥1̈ = 𝑘(𝑥2 − 𝑥1)       (76b) 

1
2
𝑚𝑥𝑁̈ = −𝑘(𝑥𝑁 − 𝑥𝑁−1)      (76c) 

 
buluruz.  

Bu denklemlerin çözümlerini bulmak için iletim yolunun bir ucundan başlatılan bir atmanın 
biçim değiştirmeden sabit bir hızla yayıldığını düşünelim. Bu varsayım genellikle geçerli 
değildir, bunu geçirli kılan koşullar ileride tartışılacaktır. Bu varsayımı simge halinde 
göstermek için, sağa doğru yol alan bir atma düşünelim. Eğer belli bir n kütlesi, zamanla x

n
(t) 

fonksiyonu ile verilen bir yerdeğiştirmeye uğrarsa bir sonraki (n + 1) kütlesi aynı 
yerdeğiştirmeye daha sonraki bir t + T anında uğrar. Burada T, Şekil-43’de görüldüğü gibi bir 
atmanın bir kesimlik “yolu” alması için gereken zamandır.  

 

ŞEKİL-43 
 

Öyle ise  
 

𝑥𝑛−1(𝑡) = 𝑥𝑛(𝑡 + 𝑇) 
𝑥𝑛+1(𝑡) = 𝑥𝑛(𝑡 − 𝑇)     (77)  

olduğunu düşünebiliriz.  

Bu bağıntıları basitleştirmek için Taylor serisi açılımını kullanarak xn(t ± T) fonksiyonlarını 
xn ve xn ‘nın t anındaki türevleri cinsinden aşağıdaki gibi yazabiliriz.  

𝑥𝑛(𝑡 + 𝑇) = 𝑥𝑛(𝑡) + 𝑥𝑛̇(𝑡)𝑇 + 1
2
𝑥𝑛̈(𝑡)𝑇2 + ⋯    

ve 
𝑥𝑛(𝑡 − 𝑇) = 𝑥𝑛(𝑡) − 𝑥𝑛̇(𝑡)𝑇 + 1

2
𝑥𝑛̈(𝑡)𝑇2 + ⋯      (78)  

Yukarıdaki bağıntılarda n’yi sıra ile (n – 1), veya (n + 1) ile değiştirerek aynı bağıntıları       
x

n–1 
(t ± T) ve x

n+1 
(t ± T) için yazabiliriz. Aşağıdaki çözümlemede, bu sonsuz serilerin ilk üç 

terimi dışındaki bütün terimlerinin önemsenmeyecek kadar küçük olduğunu düşüneceğiz. Bu 
yaklaşıklık, atmanın tümünün verilen bir noktadan geçmesi için gerekli zamanın T’ye göre 
çok büyük alınması halinde geçerlidir. Bu doğru ise o zaman her bir x, T zaman aralığında 
oldukça az değişir; x

n
(t) ve xn (t + T) arasındaki fark küçük olur ve seri hızla yakınsaklaşır. 
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İlerde göreceğimiz gibi bu varsayımın, atmaların biçim değiştirmeksizin belli bir hızla 
yayılmasını söyleyen önceki varsayımımız ile çok yakın bir ilişkisi vardır.  

Eşitlik-76’nın çözümlerinde yaptığımız gibi Eşitlik-76a’da Eşitlik-77’yi yerine koyalım 
Eşitlik-78 ile verilen seri açılımlarını kullanalım:  

𝑚𝑥𝑛̈(𝑡) =  𝑘[𝑥𝑛(𝑡 + 𝑇) − 2𝑥𝑛(𝑡) + 𝑥𝑛−1(𝑡 − 𝑇)]

= 𝑘 �𝑥𝑛(𝑡) + 𝑥𝑛(𝑡)𝑇 +
1
2
𝑥̈n

̇
(𝑡)𝑇2 − 2𝑥𝑛(𝑡) + 𝑥𝑛(𝑡) − 𝑥̇𝑛(𝑡)𝑇 +  

1
2
𝑥̈𝑛(𝑡)𝑇2� 

veya 
𝑚𝑥𝑛̈(𝑡) = 𝑘𝑥̈𝑛(𝑡)𝑇2                                           (79)  

Sağ taraftaki T
3 

ve daha büyük üslü terimleri attık. Bunlar bırakılan terimlerden çok daha 
küçüktürler.  

Bu denklem, kütlelerin hareketinin nasıl olduğunu ayrıntı ile göstermez. Bunu bulmak için ilk 
atmanın biçimini bilmeliyiz. Fakat bu, çözümler üzerindeki ilk varsayımımızın, Eşitlik-77, 
mekanik kanunları ile uyuştuğunu gösterir. Bundan başka, Eşitlil-79’un bu yasalara uyması 
için bir özdeşlik olması gerektiğinden T “kesim başına gecikme” zamanının  

     
𝑇 =  (𝑚/𝑘

 
)1/2 

                  (80) 
 
 ile verildiğini görürüz. Şimdiye dek söylenilen her şeyin sağa olduğu kadar sola doğru 
yayılan, bir atma için de geçerli olduğunu belirtelim. Bu durumda Eşitlik-77’deki işaretleme 
zıt olur ve Eşitlik-79’da da buna karşılık değişmeler olduğu için çözümlerin herhangi bir 
toplamı da bir çözümdür. Bu nedenle hareket zıt yönlerde yol alan atmaların üst üste binmesi 
olabilir. Gerçekten bir atma bir uçtan yansıdığında böyle bir durum ortaya çıkar, şimdi bu 
yansımaları tartışacağız.  
 

YANSIMALAR  

Sönüm kuvvetleri olmayınca sağ uçtaki koordinatı xN olan m/2 kütlesinin hareket denklemi 
Eşitlik-5.1c’dir. Bununla birlikte sözü edildiği gibi yansıyan atmanın değişmesini veya 
tamamen önlenmesini sağlayacak enerji soğurumu için bir yol arayabiliriz. Bu nedenle bu 
kütleye –b𝑥̇𝑁 değişken sönüm kuvvetini ekleyerek 

1
2
𝑚𝑥̈𝑁 = −𝑘(𝑥𝑁 − 𝑥𝑁−1) − 𝑏𝑥̇𝑁      (81) 

 hareket denklemini elde ederiz. Bu denklem, bir atmanın iletim yolunun ucunda yansımasını 
incelemek için kullanılabilir.  

Yansıma ve Geçme Katsayıları: 

Belirli bir gerilme altında olan ip, birim uzunluk başına kütlesi farklı bir ip ile birleştirilirse, 
birleşme noktasında oluşan süreksizlikte ikinci ortama geçme yanında, yansıma da ortaya 
çıkar (Şekil-44). 
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ŞEKİL-44 

 

Boyca kütle yoğunlukları 𝜇1 ve 𝜇2 olan iplerin Şekil-44’deki gibi 𝑥 = 0 noktasında 
birleştiğini kabul edelim. Bu durumda aşağıdaki bağıntıları yazabiliriz: 

 

Gelen dalga (+x yönünde)        𝑦𝐼(𝑥, 𝑡) = 𝐴𝑒𝑖(ω𝑡−𝑘1𝑥)               (82a) 

Yansıyan dalga (-x yönünde)   𝑦𝑅(𝑥, 𝑡) = 𝐵𝑒𝑖(ω𝑡+𝑘1𝑥)                                    (82b) 

Geçen dalga (+x yönünde)       𝑦𝑇(𝑥, 𝑡) = 𝐶𝑒𝑖(ω𝑡−𝑘2𝑥)              (82c) 

Sol taraftaki bileşke dalga  :      𝑦1(𝑥, 𝑡) = 𝑦𝐼(𝑥, 𝑡) + 𝑦𝑅(𝑥, 𝑡)                       (83a) 

Sağ taraftaki bileşke dalga  :      𝑦2(𝑥, 𝑡) = 𝑦𝑇(𝑥, 𝑡)                                    (83b) 

Burada gelen, yansıyan ve geçen dalgalar kompleks üstel fonksiyon  gösteriminde alınmıştır. 

i) x=0 noktasında iplerdeki enine yer değiştirmeler eşit olmalıdır: 

𝑦1(0, 𝑡) = 𝑦2(0, 𝑡) 

veya  

𝑦𝐼(0, 𝑡) + 𝑦𝑅(0, 𝑡) = 𝑦𝑇(0, 𝑡) 

veya 

𝐴𝑒𝑖(ω𝑡) + 𝐵𝑒𝑖(ω𝑡) = 𝐶𝑒𝑖(ω𝑡) 

yazabiliriz. Burada her iki taraf 𝑒𝑖(ω𝑡)’ye bölünerek gelen, yansıyan ve geçen dalgaların 

genlikleri arasında  

                   𝐴 + 𝐵 = 𝐶                                         (84) 

ilişkisi elde edilir. 
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ii) 𝒙 = 𝟎 noktasında ipler üzerindeki enine kuvvetler (gerilme kuvvetleri) her an eşit 

olmalıdır:  

Bu koşuldan 

𝑇
𝜕𝑦1(𝑥, 𝑡)

𝜕𝑥
�
𝑥=0

= 𝑇
𝜕𝑦2(𝑥, 𝑡)

𝜕𝑥
�
𝑥=0

 

veya 

𝑇
𝜕𝑦𝐼(𝑥, 𝑡)

𝜕𝑥
�
𝑥=0

+ 𝑇
𝜕𝑦𝑅(𝑥, 𝑡)

𝜕𝑥
�
𝑥=0

= 𝑇
𝜕𝑦𝑇(𝑥, 𝑡)

𝜕𝑥
�
𝑥=0

 

yazabiliriz. Burada  Eşitlik-5.2’deki değerler kullanılarak 

−𝑇𝐴𝑘1𝑖𝑒𝑖(ω𝑡) + 𝑇𝐵𝑘1𝑖𝑒𝑖(ω𝑡) = −𝑇𝐶𝑘2𝑖𝑒𝑖(ω𝑡) 

veya 

−𝑇𝐴𝑘1 + 𝑇𝐵𝑘1 = −𝑇𝐶𝑘2 

veya 

              𝐴𝑘1 − 𝐵𝑘1 = 𝐶𝑘2                             (85) 

elde edilir. 

Şimdi (84) ve (85) denklemlerini yeniden yazalım: 

𝐴 + 𝐵 = 𝐶 

𝐴𝑘1 − 𝐵𝑘1 = 𝐶𝑘2 

Birinci denklemi 𝑘1 ile çarpalım ve ikinci denklem ile taraf tarafa toplayalım: 

𝑘1𝐴 + 𝑘1𝐵 = 𝑘1𝐶 

+   𝑘1𝐴 − 𝑘1𝐵 = 𝑘2𝐶 

2𝑘1𝐴 = (𝑘1 + 𝑘2)𝐶 

Buradan  

    𝐶
𝐴

= 2𝑘1
𝑘1+𝑘2

                (86) 

sonucunu elde ederiz. Eşitlik-84’dan  

𝐵 = 𝐶 − 𝐴   𝑣𝑒𝑦𝑎 
𝐵
𝐴

=
𝐶
𝐴
− 1 

yazabiliriz ve (86) denklemini burada kullanırsak 
𝐵
𝐴

=
2𝑘1

𝑘1 + 𝑘2
− 1 =

2𝑘1 − 𝑘1 − 𝑘2
𝑘1 + 𝑘2

=
𝑘1 − 𝑘2
𝑘1 + 𝑘2

 

veya 

    𝐵
𝐴

= 𝑘1−𝑘2
𝑘1+𝑘2

                    (87) 

sonucunu elde ederiz.  
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İpteki dalganın ilerleme hızının 𝑣 = ω
𝑘

= �𝑇
𝜇
 olduğunu biliyoruz. Buradan 

    𝑘 = �𝜇
𝑇

= ω

√𝑇 √𝜇                 (88a) 

yazabiliriz. Birleşme noktasında dalgaların açısal frekansı (ω) ve ipteki gerileme kuvveti (𝑇) 

eşit olacağından 

    𝑘1 = ω

√𝑇 √𝜇1                 (88b) 

    𝑘2 = ω

√𝑇 √𝜇2  

yazabiliriz. Bu değerleri (86) ve (87) denklemlerinde kullanarak 𝐶
𝐴
 ve 𝐵

𝐴
 oranları için 

    𝐵
𝐴

= √𝜇1−√𝜇2
√𝜇1+√𝜇2

                 (89a) 

    𝐶
𝐴

= 2√𝜇1 

√𝜇1+√𝜇2
                 (89b) 

yazabiliriz.  
𝑇
𝑣
 oranına karakteristik empedans diyeceğiz ve Z ile göstereceğiz. Burada v hızı için 

𝑣 = �𝑇 𝜇⁄  değerini kullanırsak karakteristik empedans için 

            𝑍 = 𝑇
𝑣

= 𝑇
�𝑇 𝜇⁄

= 𝑇√𝜇
√𝑇

= �𝜇𝑇          (90) 

𝑍 =
𝑇
𝑣

=
𝜇𝑣2

𝑣
= 𝜇𝑣 

veya √𝜇 = 𝑍
√𝑇

 yazabiliriz. İpin her yerinde T gerilimleri eşittir ve bundan dolayı  √𝜇1 = 𝑍1
√𝑇

 ve 

√𝜇2 = 𝑍2
√𝑇

 yazılabilir. Bu değerler (89a) ve (89b) ifadelerinde kullanılarak 

𝐵
𝐴

= 𝑍1−𝑍2
𝑍1+𝑍2

                (91a) 

     𝐶
𝐴

= 2𝑍1
𝑍1+𝑍2

          (91b) 

sonuçları elde edilir. 

𝐵
𝐴
 oranına yansıma katsayısı ve 𝐶

𝐴
 oranına ise geçme katsayısı adı verilir. Birinci ortamdan 

ikinci ortama gelen bir dalganın yansıma katsayısını R12 ile, birinci ortamdan ikinci ortama 
geçen dalganın geçme katsayısını 𝑇12 ile göstereceğiz. Bu tanımlama kullanılırsa (916a) ve 
(916b) ifadelerinden  

      𝑅12 = 𝐵
𝐴

= 𝑍1−𝑍2
𝑍1+𝑍2

       (92a) 

      𝑇12 = 𝐶
𝐴

= 2𝑍1
𝑍1+𝑍2

        (92b) 

yazabiliriz.  
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Burada verilen yansıma (𝑅12) ve geçme (𝑇12) katsayılarının genlik yansıma ve geçme 

katsayıları olduğuna dikkat ediniz. 

Yukarıda tartıştığımız kütle-yay modelinde her bir hücrenin uzunluğunu 𝑎 alalım. Bu 

durumda boyca kütle yoğunluğu yerine 𝜇 = 𝑚/𝑎 yazabiliriz. Bunu Eşitlik (90)’da 

kullanırsak, karakteristik empedans için  

𝑍 = �𝜇𝑇 = �𝑚𝑇
𝑎

        (93) 

yazabiliriz. Burada 𝑇/𝑎 oranı ise 𝑘 yay sabiti olarak alınabilir. Bu durumda karakteristik 

empedans için 

𝑍 = √𝑚𝑘                 (94a) 

yazabiliriz. Bu durumda Z1  ve Z2  empadansları için    

          𝑍1 = √𝑚𝑘      ve       𝑍2  = b            (94b) 

 alabiliriz (𝑏 = 𝐾𝑢𝑣𝑣𝑒𝑡/ℎ𝚤𝑧 ). 

Bu durumda yansıma  ve geçme katsayıları için 

Γ𝑅 = 𝐵
𝐴

= 𝑍1−𝑍2
𝑍1+𝑍2

= √𝑚𝑘−𝑏
√𝑚𝑘+𝑏

= 1−𝑏/√𝑚𝑘
1+𝑏/√𝑚𝑘

                       (95a) 

ve 

Γ𝑇 = 𝐶
𝐴

= 2𝑍1
𝑍1+𝑍2

= 2√𝑚𝑘
√𝑚𝑘+𝑏

= 2
1+𝑏/√𝑚𝑘

                    (95b) 

ifadeleri yazılabilir. 

1. Eğer sönüm katsayısı b = 0 ise ΓR = B/A = 1 olur ve atmanın tümü yansıtılır.  

2. 𝑏 = 𝑍1 = √𝑚𝑘  için ΓR ’nin sıfır olduğunu belirtelim. Bu durumda sönüm nedeniyle 

atmanın tümü soğurulur, hiç yansımış atma yoktur ve uç kütlenin yer değiştirmesinin 

tepesi ötekileri ile aynıdır. 

3. Son olarak, b katsayısı Z1’e göre çok büyük ise ΓR yansıma katsayısı  –1’e yaklaşır. 

Yani yansımış atma tersine çevrilir ve uçtaki kütle hiç hareket etmez. 

Sonuç olarak yansıma ve geçme  katsayısı  b’nin büyüklüğüne kritik şekilde bağlıdır.  

Bu konu için Vibrations and waves, George G. King ve Vibrations and waves, A. P. 

French kitaplarına bakabilirsiniz. 
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ELEKTRİKSEL BENZERİ  

Şimdi, önceden incelediğimiz m ile L, k ile 1/C ve b ile R arasındaki benzerlikleri kullanarak 
bu dizgenin elektrikteki benzerini bulabilecek durumdayız. Akla yatkın bir benzer dizgenin 
Şekil-45’deki devre olduğu açıkça görülüyor. Şimdi bunun gerçekten geçerli olduğunu ortaya 
koyalım.  

 

ŞEKİL-45 

Şekilde belirtilen gösterimleri kullanarak Q
n–1 

ve Q
n 

sığalarını içine alan ilmeğe Kirchhoff’un 
ilmek yasalarını uyguladığımızda  

𝑄𝑛−1
𝐶

− 𝑄𝑛
𝐶

= 𝐿 𝑑𝐼𝑛
𝑑𝑡

     (96) 
 
buluruz. Benzerince Q

n 
ve Q

n+1 
i içine alan ilmek için  

𝑄𝑛
𝐶
− 𝑄𝑛+1

𝐶
= 𝐿 𝑑𝐼𝑛+1

𝑑𝑡
     (97) 

elde ederiz. Q
n 

in üstündeki kavşağa Kirchhoff’un akım kanununu uygularsak  
𝑑𝑄𝑛
𝑑𝑡

=  𝐼𝑛 − 𝐼𝑛+1  veya  𝑑
2𝑄𝑛
𝑑𝑡2

= 𝑑𝐼𝑛
𝑑𝑡
− 𝑑𝐼𝑛+1

𝑑𝑡
   (98) 

çıkar.  
Akım türevlerini ilmek denklemlerinden çözüp Eşitlik-98’de yerlerine koyduğumuzda  
 

𝐿 𝑑2𝑄𝑛
𝑑𝑡2

= 1
𝐶

(𝑄𝑛−1 − 2𝑄𝑛 + 𝑄𝑛+1)    (99) 

buluruz.  
       
Bu denklemin Eşitlik-76a ile karşılaştırılması bunların tam aynı yapıda olduklarını dolayısı ile 
elektriksel benzerin geçerli olduğunu gösterir. Elektromekaniksel benzerin incelenmesini 
bitirmiş olmak için denklemler uçlar için elde edip bunları Eşitlik-76c ve Eşitlik-81 ile 
karşılaştırmamız gerekmektedir. Bu hesaplamalar ilerisi için gerekli olmadığından burada 
verilmeyecektir. Öğrencinin bunları kendisi için çıkarması iyi olur. Yukarıdaki mekaniksel 
çözümlemenin en önemli sonucu Eşitlik-80 ve Eşitlik-95’dır. Şimdi bunları elektriksel 
benzerin diline çevirirsek  

     𝑇 = (𝐿𝐶)1/2                           (100) 
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𝑅12 = 𝐵
𝐴

= 1−𝑅/(𝐿/𝐶)1/2

1+𝑅/(𝐿/𝐶)1/2    (101) 
 
elde ederiz. Özellikle, atmanın R direnci ile kapalı uçta tamamen soğurulması için gerekli 
koşul: 

     𝑅 = (𝐿/𝐶)1/2                  (102) 

dir. Empedans boyutunda olan (L/C)
1/2 

niceliğine dizgenin belirtgin empedansı denir; böylece 
uç direnci belirtgin impendansa eşit olunca iletim yolunun ucundan hiç bir yansıma 
olmayacağı gibi önemli bir sonuca varırız.  

İletim yolunun öteki ucundan (𝑛 =  𝑁 yerine 𝑛 =  1) yansımaların tartışmasını yapmadık. 
Fakat biraz düşününce bu dizgede hiç bir şeyin yöne bağlı olmadığı görülür. Şekil-46’da 
sağdan sola doğru yol alan bir yansımış atma, iletim yolunun bağlı bulunduğu devrenin etkin 
empedansı ile bağımlı bir yansıma genliği ile sol uçta ikinci bir yansımaya daha uğrar. Bu 
yansıma iletim yoluna atmalar gönderen kaynağın empedansı ile veya eklenen dirençler ile 
oluşan devrenin iç empedansı ile olabilir. Şu halde, iletim yolunun uçları belirtgin empedansa 
eşit dirençlerle kapanmamış ise her yansımada Eşitlik-101 ile verilen bir zayıflama ile ardısıra 
yansımalar meydana gelir.  

DAĞILIM (DİSPERSİYON)  

Şimdi biçimi ne olursa olsun bir atmanın iletim yolunda biçim değiştirmeksizin sabit hızla yol 
alıp almadığı sorusuna dönelim. Bu soru sinüssel dalgaların yayılmasını ele alarak en kolay 
şekilde incelenebilir. Bir atma Fourier çözümlemesi ile her zaman sinüssel bileşenlerin bir 
toplamı olarak gösterilebilir. Eğer bütün sinüssel bileşenler aynı hızla yol alırlarsa o zaman 
önceden varsaymış olduğumuz gibi atmanın bütün kısımlarının aynı hızla yol almasını 
bekleyebiliriz. Fakat sinüssel dalgaların hızının frekanslarına bağlı olduğu ortaya çıkarsa o 
zaman genel olarak bir atmanın belirli bir hızla yayıldığı doğru olmayacaktır.  

O halde yapılacak iş, kesimler arasında sabit faz farkı olmak üzere Eşitlik-103 için bir sinüssel 
çözüm almak, onun çözüm olup olmadığını denemek ve kesim başına 𝑇 gecikme zamanını 
hesaplamaktır. Bu deneme çözümü:  
 

𝑄𝑛 = 𝑄0cos ω(𝑡 − 𝑛𝑇)                (104) 
 
dır; 𝑛 inci yükün birinciye bakınca bir 𝑛𝑇 zamanı kadar geciktiği düşünülür. Q

0 
bir genlik 

sabiti olup bütün yükler için aynıdır. Bunu Eşitlik-99’da yerine koyunca  
 
−𝐿𝐶𝜔2𝑄0 cosω(𝑡 − 𝑛𝑇)

= 𝑄0𝑐𝑜𝑠𝜔[𝑡 − (𝑛 + 1)𝑇] − 2𝑄0𝑐𝑜𝑠𝜔(𝑡 − 𝑛𝑇) + 𝑄0𝑐𝑜𝑠𝜔[𝑡 − (𝑛 − 1)𝑇] 
 
            (105)  

elde ederiz. Yalnız 𝜔𝑇 ve 𝜔(𝑡 –  𝑛𝑇) niceliklerinin kosinüsleri olan terimleri elde etmek için 
kosinüs fonksiyonlarını açalım ve 𝑄0𝑐𝑜𝑠 𝜔(𝑡 –  𝑛𝑇) ortak katsayısına bölelim:  
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−𝐿𝐶𝜔2𝑄0 cosω(𝑡 − 𝑛𝑇)
= 𝑄0𝑐𝑜𝑠𝜔(𝑡 − 𝑛𝑇)cosωT + 𝑄0𝑠𝑖𝑛𝜔(𝑡 − 𝑛𝑇)sinωT − 2𝑄0𝑐𝑜𝑠𝜔(𝑡 − 𝑛𝑇)
+ 𝑄0𝑐𝑜𝑠𝜔(𝑡 − 𝑛𝑇)cosωT − 𝑄0𝑠𝑖𝑛𝜔(𝑡 − 𝑛𝑇)sinωT 

Buradan  
𝐿𝐶𝜔2 = 2(1 − cosωT) = 4𝑠𝑖𝑛2ωT          (106) 

 
elde ederiz. Son kısım yarı-açı formülü kullanılarak elde edilmiştir.  

Demek ki, Eşitlik-104 tipinde çözümler vardır, bunlarda her yük aynı frekansta fakat kesimler 
arasındaki φ =  𝜔𝑇 ile verilen sabit bir faz farkı ile sinüssel olarak salınır. Bununla beraber 
yaklaşıklık dışında kesim başına 𝑇 gecikme zamanı, Eşitlik-100 ile verilmez ve genellikle 
frekanstan bağımsız değildir. Eğer 𝜔’ya karşılık gelen periyod kesim başına 𝑇 gecikmesinden 
uzun ise o zaman 𝜔𝑇 çok küçük olduğundan komşu kesimler arasındaki faz farkı çok 
küçüktür. Bu durumda Eşitlik-106’daki sinüs fonksiyonu kuvvet serisine açılabilir. Serinin 
yalnız ilk terimi bırakılırsa  

 𝐿𝐶𝜔2 =  4 (𝜔𝑇/2)2     veya     𝑇 = (𝐿𝐶)1/2 
 
elde ederiz. Böylece yalnız aşağı frekans sınırında T frekanstan bağımsız olarak Eşitlik-100 
ile verilir. Bunun tersine sinüs fonksiyonu 1’i aşamadığından  

 
𝐿𝐶𝜔2 = 4

  
    veya  𝜔 = 2/(𝐿𝐶)1/2       (107) 

 
ile verilen bir üst frekans sınırı vardır. Frekans bu kritik değerden büyükse Eşitlik- (100)’ün 
eşitlik-104 şeklinde hiç bir sinüssel çözümü yoktur.  

Şekil-46, Eşitlik-106’dan elde edilen 𝑇’yi 𝜔’nın fonksiyonu olarak veren grafiği 
göstermektedir. Şeklin gösterdiği gibi küçük frekanslarda 𝑇, 𝜔’dan bağımsızdır ve (LC)1/2 

ye 
eşittir; fakat 𝜔 arttıkça 𝑇’de artar ve kesilim (cutoff) frekansından π (LC)1/2 

/2 değerine ulaşır. 
Bu frekansa karşılık gelen periyod 2π/ω veya π(LC)1/2 

olup kesilim frekansındaki kesim 
başına gecikme zamanının iki katına eşittir.  

 
ŞEKİL 46 

 

Şu halde periyodu kesim başına gecikmenin iki katından büyük olan bir sinüssel dalga yapı 
boyunca yayılamaz. Kesilim frekansının L ve C değerleri iletim yolununki ile aynı olan yalın 
bir LC devresinin rezonans frekansının iki katı olması eğlenceli görülebilir.  
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Yukarıdaki tartışma bir atmanın iletim yolundan bozulmadan geçebilmesi için çeşitli frekans 
bileşenlerinin kesilim frekansından küçük olması gerektiğini gösteriyor. Yoksa biraz bozulma 
olacak ve eğer temel bileşenler kesilimin üstünde ise atma büyük ölçüde bozulacak ve 
zayıflayacaktır. Atmanın yayılma hızının frekansa bağlı oluşundan ileri gelen zayıflama ve 
bozulma olayının tümüne çoğunlukla dağılım (dispersion) denir. Fiziğin dalga olaylarının işe 
karıştığı ses, optik ve kuantum mekaniği gibi öteki kollarında buna benzer çok olay vardır.  

İLETİM YOLLARI  

İletim yolunun her kesimindeki L ile C’yi azaltarak kesilim frekansının yükselebileceği 
Eşitlik-101’den görülmektedir. Örneğin, eğer L ile C önceki değerlerinin yarısıra indirilirse 
kesilim frekansı 2 katına çıkar, fakat belirtgin empedans değişmez. Bu gözlem, indüksiyon 
katsayısı ve sığası yol boyunca sürekli olarak dağılmış olan bir iletim yolu olabileceğini 
gösterir. Böyle bir iletim yolunun bir yüksek frekans kesilimi olmaması ve tam dağılmasız 
olması gerekir.  

Böyle bir dizge gerçekten olabilir ve belli sınırlar içinde kullanışlıdır. Basit bir iletken çifti 
böyle bir dizge oluşturur ve buna dağılmış-parametreli yol veya iletim yolu denir. Örneğin, bir 
çift paralel doğru iletken birim uzunluğu başına belli bir indüksiyon katsayısı vardır. Bu 
düşünceler Şekil-47’de gösterilmiştir.  

 
ŞEKİL-47 

 

Uygulamada iletim yolları çoğu kez aynı eksenli silindirler şeklinde yapılır; dış iletken, 
iletkenler arasındaki boşluk için elektrostatik bir perde gibi iş görür. Böylece iletim yolu 
çevredeki iletkenlerden doğan alanların etkisi altında değildir. Böylece iletim yoluna, aynı 
eksenli yol veya çoğu kez kısaltılmış olarak coax denir.  

Toplu-parametreli yol için çözümleme, L ve C’yi birim boy başına indüksiyon katsayısı ve 
sığa olarak yorumlayarak dağılmış-parametreli yol için de yapılabilir. Belirtgin empedans 
yine Eşitlik-97 ile verilir ve T gecikme zamanı birim uzunluk başına gecikme olur. O zaman 
bu niceliğin tersi birim zamanda alınan yol yani gerçek yayılma hızıdır. Kusursuz halde iletim 
yolunda hiç dağılım yoktur ve yayılma hızı frekanstan büsbütün bağımsızdır.  

Gerçek iletim yolları iki nedenle hiç bir zaman bu kusursuz davranışı kazanamazlar. Birinci 
iletkende enerji yitirmeye yol açan dirençlerin bulunmasıdır. İkincisi iletkenler arasındaki 
boşluğun bir kısmının tele destek için dielektrik bir madde ile doldurulmuş olmasıdır. 
Dielektriklerin özellikleri hep frekansa bağlıdır ve bir dielektrik yüksek frekanslarda enerji 
yayar, yani bir şönt direnci gibi davranır. Bu nedenle aynı eksenli iletim yollarının bile yüksek 
frekans kesilimi vardır; maddenin dikkatlice seçilmesi ile bu frekans 1010 

Hertz ve daha 
yükseğe çıkarılabilir.  
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İç ve dış yarıçapları sıra ile a ve b olan aynı eksenli silindirlerden oluşan bir iletim yolu için 
birim uzunluk başına indüksiyon katsayısının ve sığanın  

𝐿 = 𝜇
2𝜋
𝑙𝑛 𝑏

𝑎
 𝐶 = 2𝜋𝜀

ln (𝑏/𝑎)
     (108) 

olduğu elektromagnetik kuram yardımıyla gösterilebilir. Şu halde yayılma hızı: 
 

𝑢 = 1/(𝐿𝐶)
1
2 = 1/(𝜇𝜀)1/2     (109) 

olur. Bu, iletkenlerin boyutlarından bağımsızdır ve yalnız iletkenler arasındaki maddenin 
elektrik ve manyetik özelliklerine (ε ve µ) bağlıdır. Özellikle, eğer ε ve µ boşluktaki değerlere 
(ε0 ve µ0) yakınsa o zaman yayılma hızı ışığın boşluktaki hızı c = (µ0 

ε0)–1/2 
ye yakındır. Fakat, 

eğer dielektrik sabiti birden epeyce büyükse yani ε,  ε0’dan epey büyükse o zaman u, c’den 
küçüktür.  

Belirtgin empedans R = (LC)1/2 

𝑅 = 1
2𝜋

(𝜇/𝜀)1/2𝑙𝑛 𝑏
𝑎
                              (110) 

ile verilir. Böylece, iletkenlerin b/a yarıçap oranlarını değiştirerek iletim yolunun belirtgin 
empedansını kolayca değiştirebiliriz.  

Dağınık-parametreli iletim yolunun tüm çözümlenmesi, iletkenler arasındaki alanlar ile bu 
bölgedeki dalgaların yayılmasından giderek de yapılabilir. O zaman çözümlemenin ayrıntıları 
büsbütün farklıdır. Fakat yayılma hızı ve belirtgin empedans ile ilgili son vargılar aynıdırlar.  

DENEY 

1. ATMALARIN YAYILMASI  

Bir iletim yolunda atma yayılması deneyini yapmak için bir atma kanağı gerekir. Atmaları 
elde etmenin kolay bir yolu Şekil-48’de gösterildiği gibi bir kere-dalga üreteci ile birlikte bir 
RC devresini kullanmaktır. Bu düzeneğin davranışı Deney ED-1’deki gibi ayrıntılıca 
çözümlenebilir. Eğer RC zaman sabiti kare dalganın periyodundan çok küçükse akım 
dirençten her yarım dönemin başında yalnız çok kısa bir süre boyunca geçer ve sonunda kutbu 
ardışık olarak değişen bir atmalar dizisi oluşur. Açıkça görüldüğü gibi atma süresi RC ile 
oranlıdır. Yalnız tek kutuplu atmalar isteniyorsa dirence seri bir diyod bağlanabilir.  

 

ŞEKİL-48 

Atmaların iletim ve yansımasını incelemek için Şekil-49’da gösterilen devre kullanılabilir. Bu 
devre, giren, çıkan ve yansımış atmaları, süpürmesi kare dalga üretici ile zamandaş (eş 
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zamanlı) olan osiloskobun düşey girişine verir. Yolun girişindeki direnç belirtgin empedansa 
yaklaşıkça eşit olacak şekilde seçilir. Böylece uçdan yansımalar yok edilmiş olur.  

İletim yolunun  toplam gecikme süresini (NT) ölçün. Bu ve kesimlerin sayısından, kesim  
başına olan T gecikme süresini bulun. RL 

uç direnci iletim yoluna uyuncaya, yani yansımalar 
yok edilinceye kadar direnci ayarlayın. Belirtgin empedansı elde etmek için RL 

yi çıkarın 
direncini bir ohmmetre ile ölçün. Bu ölçme ve kesim başına gecikmeden L ve C değerlerini 
hesaplayın.  

 

ŞEKİL-49 

2. R
L 

İLE DEĞİŞME 

RL 
uç direncini değiştirerek çıkış genliğini RL 

nin fonksiyonu olarak ölçün. Çıkış genliğini  
RL’nin fonksiyonu olarak veren bir grafik çizin. Aynı şeyleri yansıyan atmalar için 
tekrarlayın. Önceden Eşitlik- (101)’dan elde edilen sonuçlar ile karşılaştırın.  

3. ÜSTÜSTE YANSIMA  

İletim yolunun girişinden gelen yansımaları gözleyebilmek için 560 Ω’luk giriş direnci yerine 
oldukça daha küçük veya daha büyük bir direnç koyun. Üstüste yansımaları gözleyebiliyor 
musunuz? Giriş işaretini osiloskoba veren 5,6 kΩ’luk direnci bu gözlemde çıkarabiliriz. 
Yansımaların faz bağıntıları uç direncine nasıl bağlıdır? İletilen ve yansıyan genliklerin 
beklenilenden biraz daha küçük olduğunu bulabiliriz. Bu niçin böyledir?  

4. GERİLİM ZAYIFLAMASI  

Kesim başına gerilim zayıflamasının, kesim başına seri direncin belirtgin empedansa oranı ile 
oranlı olduğunu gösterebiliriz. Gerçekte bu direnç indüktans sarımlarından ileri gelir. İletim 
yolunun seri direncini ölçünüz; bu değer ile kesimlerin sayısından kesim başına direnci 
bulunuz ve beklenilen zayıflamayı bir sabit katsayı farkı ile hesaplayınız. Bitişteki empedans 
iletim yoluna eşitlendiği zaman bunu, gözlenen zayıflama ile karşılaştırarak orantı sabitini 
bulun.  
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5. KESİLİM (CUTOFF)  

İletim yolunun yüksek frekans kesilimini hesaplayın. Denel olarak kesilimi gözleyebilir 
misiniz?  

6. AYNI EKSENLİ İLETİM YOLU  

Yukarıdaki bütün deneyler aynı eksenli iletim yolu ile tekrarlanabilir. Belirtgin empedanstan 
küçük veya büyük birkaç uç direnci ile iletimi ve yansımayı gözleyiniz. Toplu-parametreli 
iletim yolu ile ne gibi benzerlikleri veya ayrılıkları vardır?  

SORULAR  

1 Bir iletim yolunun iki ucunu Z belirtgin empedansından çok daha büyük dirençlere 
bağladığımızı düşünelim. 0, 2, 4, 6, ... yansımalarından sonra çıkışa varan ardışık 
atmaların kutuplanışını tartışın. Aynı tartışmayı dirençlerin her ikisinin de Z’den 
küçük ve birinin küçük ötekinin büyük olması halinde yapın.  

2 Eşitlik-95’daki b(mk)–1/2 
niceliğinin boyutsuz olduğunu gösterin.  

3 (L/C)
1/2 

niceliğinin direnç boyutunda olduğunu gösterin.  
4 Bu deneyde kullanılan toplu-parametreli iletim yolundaki bütün indüktanslar çoğu kez 

ortak bir akım makarasına sarılmışlardır. Bu nedenle kesimler arasında biraz 
indüksiyon çiftlenimi vardır. Bunun atmanın yayılmasında etkisi ne olabilir?  

5 Eşitlik-108’de verilen birim uzunluk başına indüksiyon ve sığa ifadelerini aynı eksenli 
bir iletim yolu için çıkarın.  

6 Kesim başına T gecikme süresinin kesilme frekansında ½ π(LC)1/2olduğunu gösterin.  
7 Bir eksenli iletim yolunun belirtgin empedansının MKS birimlerinde Z = 60 ln (b/a) Ω 

verildiğini gösterin. 60 katsayısı kesin bir sayı mıdır, yoksa yaklaşık bir sayı mıdır? 
Eğer yaklaşık bir sayı ise tam değerinden yüzde kaç farklıdır?  

8 RC devresi ve kare-dalga üretecini kullanarak oluşturulan bir atmanın biçimini veren 
bir ifade çıkarınız. Gerçek atmanın biçimi tıpatıp böyle midir? Kare dalganın köşeleri 
tam keskin değilse ne olur?  

9 Toplu-parametreli iletim yolunda atamaların faz ve grup hızları aynı mıdır yoksa farklı 
mıdır? Hangisi büyüktür? Niçin?  
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